Cargando…

Protocadherins control the modular assembly of neuronal columns in the zebrafish optic tectum

Cell–cell recognition guides the assembly of the vertebrate brain during development. δ-Protocadherins comprise a family of neural adhesion molecules that are differentially expressed and have been implicated in a range of neurodevelopmental disorders. Here we show that the expression of δ-protocadh...

Descripción completa

Detalles Bibliográficos
Autores principales: Cooper, Sharon R., Emond, Michelle R., Duy, Phan Q., Liebau, Brandon G., Wolman, Marc A., Jontes, James D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4657173/
https://www.ncbi.nlm.nih.gov/pubmed/26598617
http://dx.doi.org/10.1083/jcb.201507108
Descripción
Sumario:Cell–cell recognition guides the assembly of the vertebrate brain during development. δ-Protocadherins comprise a family of neural adhesion molecules that are differentially expressed and have been implicated in a range of neurodevelopmental disorders. Here we show that the expression of δ-protocadherins partitions the zebrafish optic tectum into radial columns of neurons. Using in vivo two-photon imaging of bacterial artificial chromosome transgenic zebrafish, we show that pcdh19 is expressed in discrete columns of neurons, and that these columnar modules are derived from proliferative pcdh19(+) neuroepithelial precursors. Elimination of pcdh19 results in both a disruption of columnar organization and defects in visually guided behaviors. These results reveal a fundamental mechanism for organizing the developing nervous system: subdivision of the early neuroepithelium into precursors with distinct molecular identities guides the autonomous development of parallel neuronal units, organizing neural circuit formation and behavior.