Cargando…
Intravitreal AAV2.COMP-Ang1 Prevents Neurovascular Degeneration in a Murine Model of Diabetic Retinopathy
Diabetic retinopathy (DR) is the leading cause of blindness in the working-age population in the U.S. The vision-threatening processes of neuroglial and vascular dysfunction in DR occur in concert, driven by hyperglycemia and propelled by a pathway of inflammation, ischemia, vasodegeneration, and br...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4657578/ https://www.ncbi.nlm.nih.gov/pubmed/26340930 http://dx.doi.org/10.2337/db14-1030 |
Sumario: | Diabetic retinopathy (DR) is the leading cause of blindness in the working-age population in the U.S. The vision-threatening processes of neuroglial and vascular dysfunction in DR occur in concert, driven by hyperglycemia and propelled by a pathway of inflammation, ischemia, vasodegeneration, and breakdown of the blood retinal barrier. Currently, no therapies exist for normalizing the vasculature in DR. Here, we show that a single intravitreal dose of adeno-associated virus serotype 2 encoding a more stable, soluble, and potent form of angiopoietin 1 (AAV2.COMP-Ang1) can ameliorate the structural and functional hallmarks of DR in Ins2Akita mice, with sustained effects observed through six months. In early DR, AAV2.COMP-Ang1 restored leukocyte-endothelial interaction, retinal oxygenation, vascular density, vascular marker expression, vessel permeability, retinal thickness, inner retinal cellularity, and retinal neurophysiological response to levels comparable with nondiabetic controls. In late DR, AAV2.COMP-Ang1 enhanced the therapeutic benefit of intravitreally delivered endothelial colony-forming cells by promoting their integration into the vasculature and thereby stemming further visual decline. AAV2.COMP-Ang1 single-dose gene therapy can prevent neurovascular pathology, support vascular regeneration, and stabilize vision in DR. |
---|