Cargando…

Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma

BACKGROUND: Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes in...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Leland S., Ning, Shuluo, Eschbacher, Jennifer M., Gaw, Nathan, Dueck, Amylou C., Smith, Kris A., Nakaji, Peter, Plasencia, Jonathan, Ranjbar, Sara, Price, Stephen J., Tran, Nhan, Loftus, Joseph, Jenkins, Robert, O’Neill, Brian P., Elmquist, William, Baxter, Leslie C., Gao, Fei, Frakes, David, Karis, John P., Zwart, Christine, Swanson, Kristin R., Sarkaria, Jann, Wu, Teresa, Mitchell, J. Ross, Li, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658019/
https://www.ncbi.nlm.nih.gov/pubmed/26599106
http://dx.doi.org/10.1371/journal.pone.0141506
_version_ 1782402457838551040
author Hu, Leland S.
Ning, Shuluo
Eschbacher, Jennifer M.
Gaw, Nathan
Dueck, Amylou C.
Smith, Kris A.
Nakaji, Peter
Plasencia, Jonathan
Ranjbar, Sara
Price, Stephen J.
Tran, Nhan
Loftus, Joseph
Jenkins, Robert
O’Neill, Brian P.
Elmquist, William
Baxter, Leslie C.
Gao, Fei
Frakes, David
Karis, John P.
Zwart, Christine
Swanson, Kristin R.
Sarkaria, Jann
Wu, Teresa
Mitchell, J. Ross
Li, Jing
author_facet Hu, Leland S.
Ning, Shuluo
Eschbacher, Jennifer M.
Gaw, Nathan
Dueck, Amylou C.
Smith, Kris A.
Nakaji, Peter
Plasencia, Jonathan
Ranjbar, Sara
Price, Stephen J.
Tran, Nhan
Loftus, Joseph
Jenkins, Robert
O’Neill, Brian P.
Elmquist, William
Baxter, Leslie C.
Gao, Fei
Frakes, David
Karis, John P.
Zwart, Christine
Swanson, Kristin R.
Sarkaria, Jann
Wu, Teresa
Mitchell, J. Ross
Li, Jing
author_sort Hu, Leland S.
collection PubMed
description BACKGROUND: Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM. METHODS: We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set. RESULTS: We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients). CONCLUSION: Multi-parametric MRI and texture analysis can help characterize and visualize GBM’s spatial histologic heterogeneity to identify regional tumor-rich biopsy targets.
format Online
Article
Text
id pubmed-4658019
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-46580192015-12-02 Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma Hu, Leland S. Ning, Shuluo Eschbacher, Jennifer M. Gaw, Nathan Dueck, Amylou C. Smith, Kris A. Nakaji, Peter Plasencia, Jonathan Ranjbar, Sara Price, Stephen J. Tran, Nhan Loftus, Joseph Jenkins, Robert O’Neill, Brian P. Elmquist, William Baxter, Leslie C. Gao, Fei Frakes, David Karis, John P. Zwart, Christine Swanson, Kristin R. Sarkaria, Jann Wu, Teresa Mitchell, J. Ross Li, Jing PLoS One Research Article BACKGROUND: Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM. METHODS: We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set. RESULTS: We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients). CONCLUSION: Multi-parametric MRI and texture analysis can help characterize and visualize GBM’s spatial histologic heterogeneity to identify regional tumor-rich biopsy targets. Public Library of Science 2015-11-24 /pmc/articles/PMC4658019/ /pubmed/26599106 http://dx.doi.org/10.1371/journal.pone.0141506 Text en © 2015 Hu et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Hu, Leland S.
Ning, Shuluo
Eschbacher, Jennifer M.
Gaw, Nathan
Dueck, Amylou C.
Smith, Kris A.
Nakaji, Peter
Plasencia, Jonathan
Ranjbar, Sara
Price, Stephen J.
Tran, Nhan
Loftus, Joseph
Jenkins, Robert
O’Neill, Brian P.
Elmquist, William
Baxter, Leslie C.
Gao, Fei
Frakes, David
Karis, John P.
Zwart, Christine
Swanson, Kristin R.
Sarkaria, Jann
Wu, Teresa
Mitchell, J. Ross
Li, Jing
Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma
title Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma
title_full Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma
title_fullStr Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma
title_full_unstemmed Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma
title_short Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma
title_sort multi-parametric mri and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658019/
https://www.ncbi.nlm.nih.gov/pubmed/26599106
http://dx.doi.org/10.1371/journal.pone.0141506
work_keys_str_mv AT hulelands multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT ningshuluo multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT eschbacherjenniferm multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT gawnathan multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT dueckamylouc multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT smithkrisa multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT nakajipeter multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT plasenciajonathan multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT ranjbarsara multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT pricestephenj multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT trannhan multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT loftusjoseph multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT jenkinsrobert multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT oneillbrianp multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT elmquistwilliam multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT baxterlesliec multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT gaofei multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT frakesdavid multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT karisjohnp multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT zwartchristine multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT swansonkristinr multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT sarkariajann multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT wuteresa multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT mitchelljross multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT lijing multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma