Cargando…
Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma
BACKGROUND: Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes in...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658019/ https://www.ncbi.nlm.nih.gov/pubmed/26599106 http://dx.doi.org/10.1371/journal.pone.0141506 |
_version_ | 1782402457838551040 |
---|---|
author | Hu, Leland S. Ning, Shuluo Eschbacher, Jennifer M. Gaw, Nathan Dueck, Amylou C. Smith, Kris A. Nakaji, Peter Plasencia, Jonathan Ranjbar, Sara Price, Stephen J. Tran, Nhan Loftus, Joseph Jenkins, Robert O’Neill, Brian P. Elmquist, William Baxter, Leslie C. Gao, Fei Frakes, David Karis, John P. Zwart, Christine Swanson, Kristin R. Sarkaria, Jann Wu, Teresa Mitchell, J. Ross Li, Jing |
author_facet | Hu, Leland S. Ning, Shuluo Eschbacher, Jennifer M. Gaw, Nathan Dueck, Amylou C. Smith, Kris A. Nakaji, Peter Plasencia, Jonathan Ranjbar, Sara Price, Stephen J. Tran, Nhan Loftus, Joseph Jenkins, Robert O’Neill, Brian P. Elmquist, William Baxter, Leslie C. Gao, Fei Frakes, David Karis, John P. Zwart, Christine Swanson, Kristin R. Sarkaria, Jann Wu, Teresa Mitchell, J. Ross Li, Jing |
author_sort | Hu, Leland S. |
collection | PubMed |
description | BACKGROUND: Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM. METHODS: We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set. RESULTS: We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients). CONCLUSION: Multi-parametric MRI and texture analysis can help characterize and visualize GBM’s spatial histologic heterogeneity to identify regional tumor-rich biopsy targets. |
format | Online Article Text |
id | pubmed-4658019 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-46580192015-12-02 Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma Hu, Leland S. Ning, Shuluo Eschbacher, Jennifer M. Gaw, Nathan Dueck, Amylou C. Smith, Kris A. Nakaji, Peter Plasencia, Jonathan Ranjbar, Sara Price, Stephen J. Tran, Nhan Loftus, Joseph Jenkins, Robert O’Neill, Brian P. Elmquist, William Baxter, Leslie C. Gao, Fei Frakes, David Karis, John P. Zwart, Christine Swanson, Kristin R. Sarkaria, Jann Wu, Teresa Mitchell, J. Ross Li, Jing PLoS One Research Article BACKGROUND: Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM. METHODS: We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set. RESULTS: We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients). CONCLUSION: Multi-parametric MRI and texture analysis can help characterize and visualize GBM’s spatial histologic heterogeneity to identify regional tumor-rich biopsy targets. Public Library of Science 2015-11-24 /pmc/articles/PMC4658019/ /pubmed/26599106 http://dx.doi.org/10.1371/journal.pone.0141506 Text en © 2015 Hu et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Hu, Leland S. Ning, Shuluo Eschbacher, Jennifer M. Gaw, Nathan Dueck, Amylou C. Smith, Kris A. Nakaji, Peter Plasencia, Jonathan Ranjbar, Sara Price, Stephen J. Tran, Nhan Loftus, Joseph Jenkins, Robert O’Neill, Brian P. Elmquist, William Baxter, Leslie C. Gao, Fei Frakes, David Karis, John P. Zwart, Christine Swanson, Kristin R. Sarkaria, Jann Wu, Teresa Mitchell, J. Ross Li, Jing Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma |
title | Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma |
title_full | Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma |
title_fullStr | Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma |
title_full_unstemmed | Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma |
title_short | Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma |
title_sort | multi-parametric mri and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658019/ https://www.ncbi.nlm.nih.gov/pubmed/26599106 http://dx.doi.org/10.1371/journal.pone.0141506 |
work_keys_str_mv | AT hulelands multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT ningshuluo multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT eschbacherjenniferm multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT gawnathan multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT dueckamylouc multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT smithkrisa multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT nakajipeter multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT plasenciajonathan multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT ranjbarsara multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT pricestephenj multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT trannhan multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT loftusjoseph multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT jenkinsrobert multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT oneillbrianp multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT elmquistwilliam multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT baxterlesliec multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT gaofei multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT frakesdavid multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT karisjohnp multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT zwartchristine multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT swansonkristinr multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT sarkariajann multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT wuteresa multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT mitchelljross multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma AT lijing multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma |