Cargando…

Rapid Identification and Classification of Listeria spp. and Serotype Assignment of Listeria monocytogenes Using Fourier Transform-Infrared Spectroscopy and Artificial Neural Network Analysis

The use of Fourier Transform-Infrared Spectroscopy (FT-IR) in conjunction with Artificial Neural Network software NeuroDeveloper™ was examined for the rapid identification and classification of Listeria species and serotyping of Listeria monocytogenes. A spectral library was created for 245 strains...

Descripción completa

Detalles Bibliográficos
Autores principales: Romanolo, K. F., Gorski, L., Wang, S., Lauzon, C. R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658148/
https://www.ncbi.nlm.nih.gov/pubmed/26600423
http://dx.doi.org/10.1371/journal.pone.0143425
Descripción
Sumario:The use of Fourier Transform-Infrared Spectroscopy (FT-IR) in conjunction with Artificial Neural Network software NeuroDeveloper™ was examined for the rapid identification and classification of Listeria species and serotyping of Listeria monocytogenes. A spectral library was created for 245 strains of Listeria spp. to give a biochemical fingerprint from which identification of unknown samples were made. This technology was able to accurately distinguish the Listeria species with 99.03% accuracy. Eleven serotypes of Listeria monocytogenes including 1/2a, 1/2b, and 4b were identified with 96.58% accuracy. In addition, motile and non-motile forms of Listeria were used to create a more robust model for identification. FT-IR coupled with NeuroDeveloper™ appear to be a more accurate and economic choice for rapid identification of pathogenic Listeria spp. than current methods.