Cargando…
Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer
The identification of different grapevine varieties, currently attended using visual ampelometry, DNA analysis and very recently, by hyperspectral analysis under laboratory conditions, is an issue of great importance in the wine industry. This work presents support vector machine and artificial neur...
Autores principales: | Gutiérrez, Salvador, Tardaguila, Javier, Fernández-Novales, Juan, Diago, María P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658183/ https://www.ncbi.nlm.nih.gov/pubmed/26600316 http://dx.doi.org/10.1371/journal.pone.0143197 |
Ejemplares similares
-
On-The-Go Hyperspectral Imaging Under Field Conditions and Machine Learning for the Classification of Grapevine Varieties
por: Gutiérrez, Salvador, et al.
Publicado: (2018) -
Data Mining and NIR Spectroscopy in Viticulture: Applications for Plant Phenotyping under Field Conditions †
por: Gutiérrez, Salvador, et al.
Publicado: (2016) -
On-The-Go VIS + SW − NIR Spectroscopy as a Reliable Monitoring Tool for Grape Composition within the Vineyard
por: Fernández-Novales, Juan, et al.
Publicado: (2019) -
Vineyard water status assessment using on-the-go thermal imaging and machine learning
por: Gutiérrez, Salvador, et al.
Publicado: (2018) -
Development and Validation of a New Methodology to Assess the Vineyard Water Status by On-the-Go Near Infrared Spectroscopy
por: Diago, Maria P., et al.
Publicado: (2018)