Cargando…
Lévy Walk Navigation in Complex Networks: A Distinct Relation between Optimal Transport Exponent and Network Dimension
We investigate, for the first time, navigation on networks with a Lévy walk strategy such that the step probability scales as p(ij) ~ d(ij)(–α), where d(ij) is the Manhattan distance between nodes i and j, and α is the transport exponent. We find that the optimal transport exponent α(opt) of such a...
Autores principales: | Weng, Tongfeng, Small, Michael, Zhang, Jie, Hui, Pan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658568/ https://www.ncbi.nlm.nih.gov/pubmed/26601780 http://dx.doi.org/10.1038/srep17309 |
Ejemplares similares
-
Navigation by anomalous random walks on complex networks
por: Weng, Tongfeng, et al.
Publicado: (2016) -
Lévy random walks on multiplex networks
por: Guo, Quantong, et al.
Publicado: (2016) -
On the critical exponents of generalized ballot sequences in three dimensions and large tandem walks
por: Wallner, Michael
Publicado: (2022) -
Simulations of Lévy Walk
por: Abhignan, Venkat, et al.
Publicado: (2021) -
Memory and betweenness preference in temporal networks induced from time series
por: Weng, Tongfeng, et al.
Publicado: (2017)