Cargando…
Wellington-bootstrap: differential DNase-seq footprinting identifies cell-type determining transcription factors
BACKGROUND: The analysis of differential gene expression is a fundamental tool to relate gene regulation with specific biological processes. Differential binding of transcription factors (TFs) can drive differential gene expression. While DNase-seq data can provide global snapshots of TF binding, to...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658755/ https://www.ncbi.nlm.nih.gov/pubmed/26608661 http://dx.doi.org/10.1186/s12864-015-2081-4 |
Sumario: | BACKGROUND: The analysis of differential gene expression is a fundamental tool to relate gene regulation with specific biological processes. Differential binding of transcription factors (TFs) can drive differential gene expression. While DNase-seq data can provide global snapshots of TF binding, tools for detecting differential binding from pairs of DNase-seq data sets are lacking. RESULTS: In order to link expression changes with changes in TF binding we introduce the concept of differential footprinting alongside a computational tool. We demonstrate that differential footprinting is associated with differential gene expression and can be used to define cell types by their specific TF occupancy patterns. CONCLUSIONS: Our new tool, Wellington-bootstrap, will enable the detection of differential TF binding facilitating the study of gene regulatory systems. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-2081-4) contains supplementary material, which is available to authorized users. |
---|