Cargando…
High-order dynamic Bayesian Network learning with hidden common causes for causal gene regulatory network
BACKGROUND: Inferring gene regulatory network (GRN) has been an important topic in Bioinformatics. Many computational methods infer the GRN from high-throughput expression data. Due to the presence of time delays in the regulatory relationships, High-Order Dynamic Bayesian Network (HO-DBN) is a good...
Autores principales: | Lo, Leung-Yau, Wong, Man-Leung, Lee, Kin-Hong, Leung, Kwong-Sak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4659244/ https://www.ncbi.nlm.nih.gov/pubmed/26608050 http://dx.doi.org/10.1186/s12859-015-0823-6 |
Ejemplares similares
-
Time Delayed Causal Gene Regulatory Network Inference with Hidden Common Causes
por: Lo, Leung-Yau, et al.
Publicado: (2015) -
A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems
por: Yi, Wei Ying, et al.
Publicado: (2015) -
Discovering Genetic Factors for psoriasis through exhaustively searching for significant second order SNP-SNP interactions
por: Lee, Kwan-Yeung, et al.
Publicado: (2018) -
Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks
por: Zhu, Shijia, et al.
Publicado: (2015) -
CrossNorm: a novel normalization strategy for microarray data in cancers
por: Cheng, Lixin, et al.
Publicado: (2016)