Cargando…

Antibiotic-Driven Dysbiosis Mediates Intraluminal Agglutination and Alternative Segregation of Enterococcus faecium from the Intestinal Epithelium

The microbiota of the mammalian gastrointestinal tract is a complex ecosystem of bacterial communities that continuously interact with the mucosal immune system. In a healthy host, the mucosal immune system maintains homeostasis in the intestine and prevents invasion of pathogenic bacteria, a phenom...

Descripción completa

Detalles Bibliográficos
Autores principales: Hendrickx, Antoni P. A., Top, Janetta, Bayjanov, Jumamurat R., Kemperman, Hans, Rogers, Malbert R. C., Paganelli, Fernanda L., Bonten, Marc J. M., Willems, Rob J. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Microbiology 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4659461/
https://www.ncbi.nlm.nih.gov/pubmed/26556272
http://dx.doi.org/10.1128/mBio.01346-15
_version_ 1782402629463179264
author Hendrickx, Antoni P. A.
Top, Janetta
Bayjanov, Jumamurat R.
Kemperman, Hans
Rogers, Malbert R. C.
Paganelli, Fernanda L.
Bonten, Marc J. M.
Willems, Rob J. L.
author_facet Hendrickx, Antoni P. A.
Top, Janetta
Bayjanov, Jumamurat R.
Kemperman, Hans
Rogers, Malbert R. C.
Paganelli, Fernanda L.
Bonten, Marc J. M.
Willems, Rob J. L.
author_sort Hendrickx, Antoni P. A.
collection PubMed
description The microbiota of the mammalian gastrointestinal tract is a complex ecosystem of bacterial communities that continuously interact with the mucosal immune system. In a healthy host, the mucosal immune system maintains homeostasis in the intestine and prevents invasion of pathogenic bacteria, a phenomenon termed colonization resistance. Antibiotics create dysbiosis of microbiota, thereby decreasing colonization resistance and facilitating infections caused by antibiotic-resistant bacteria. Here we describe how cephalosporin antibiotics create dysbiosis in the mouse large intestine, allowing intestinal outgrowth of antimicrobial-resistant Enterococcus faecium. This is accompanied by a reduction of the mucus-associated gut microbiota layer, colon wall, and Muc-2 mucus layer. E. faecium agglutinates intraluminally in an extracellular matrix consisting of secretory IgA (sIgA), polymeric immunoglobulin receptor (pIgR), and epithelial cadherin (E-cadherin) proteins, thereby maintaining spatial segregation of E. faecium from the intestinal wall. Addition of recombinant E-cadherin and pIgR proteins or purified IgA to enterococci in vitro mimics agglutination of E. faecium in vivo. Also, the Ca(2+) levels temporarily increased by 75% in feces of antibiotic-treated mice, which led to deformation of E-cadherin adherens junctions between colonic intestinal epithelial cells and release of E-cadherin as an extracellular matrix entrapping E. faecium. These findings indicate that during antibiotic-induced dysbiosis, the intestinal epithelium stays separated from an invading pathogen through an extracellular matrix in which sIgA, pIgR, and E-cadherin are colocalized. Future mucosal vaccination strategies to control E. faecium or other opportunistic pathogens may prevent multidrug-resistant infections, hospital transmission, and outbreaks.
format Online
Article
Text
id pubmed-4659461
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher American Society of Microbiology
record_format MEDLINE/PubMed
spelling pubmed-46594612015-12-02 Antibiotic-Driven Dysbiosis Mediates Intraluminal Agglutination and Alternative Segregation of Enterococcus faecium from the Intestinal Epithelium Hendrickx, Antoni P. A. Top, Janetta Bayjanov, Jumamurat R. Kemperman, Hans Rogers, Malbert R. C. Paganelli, Fernanda L. Bonten, Marc J. M. Willems, Rob J. L. mBio Research Article The microbiota of the mammalian gastrointestinal tract is a complex ecosystem of bacterial communities that continuously interact with the mucosal immune system. In a healthy host, the mucosal immune system maintains homeostasis in the intestine and prevents invasion of pathogenic bacteria, a phenomenon termed colonization resistance. Antibiotics create dysbiosis of microbiota, thereby decreasing colonization resistance and facilitating infections caused by antibiotic-resistant bacteria. Here we describe how cephalosporin antibiotics create dysbiosis in the mouse large intestine, allowing intestinal outgrowth of antimicrobial-resistant Enterococcus faecium. This is accompanied by a reduction of the mucus-associated gut microbiota layer, colon wall, and Muc-2 mucus layer. E. faecium agglutinates intraluminally in an extracellular matrix consisting of secretory IgA (sIgA), polymeric immunoglobulin receptor (pIgR), and epithelial cadherin (E-cadherin) proteins, thereby maintaining spatial segregation of E. faecium from the intestinal wall. Addition of recombinant E-cadherin and pIgR proteins or purified IgA to enterococci in vitro mimics agglutination of E. faecium in vivo. Also, the Ca(2+) levels temporarily increased by 75% in feces of antibiotic-treated mice, which led to deformation of E-cadherin adherens junctions between colonic intestinal epithelial cells and release of E-cadherin as an extracellular matrix entrapping E. faecium. These findings indicate that during antibiotic-induced dysbiosis, the intestinal epithelium stays separated from an invading pathogen through an extracellular matrix in which sIgA, pIgR, and E-cadherin are colocalized. Future mucosal vaccination strategies to control E. faecium or other opportunistic pathogens may prevent multidrug-resistant infections, hospital transmission, and outbreaks. American Society of Microbiology 2015-11-10 /pmc/articles/PMC4659461/ /pubmed/26556272 http://dx.doi.org/10.1128/mBio.01346-15 Text en Copyright © 2015 Hendrickx et al. http://creativecommons.org/licenses/by-nc-sa/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license (http://creativecommons.org/licenses/by-nc-sa/3.0/) , which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Hendrickx, Antoni P. A.
Top, Janetta
Bayjanov, Jumamurat R.
Kemperman, Hans
Rogers, Malbert R. C.
Paganelli, Fernanda L.
Bonten, Marc J. M.
Willems, Rob J. L.
Antibiotic-Driven Dysbiosis Mediates Intraluminal Agglutination and Alternative Segregation of Enterococcus faecium from the Intestinal Epithelium
title Antibiotic-Driven Dysbiosis Mediates Intraluminal Agglutination and Alternative Segregation of Enterococcus faecium from the Intestinal Epithelium
title_full Antibiotic-Driven Dysbiosis Mediates Intraluminal Agglutination and Alternative Segregation of Enterococcus faecium from the Intestinal Epithelium
title_fullStr Antibiotic-Driven Dysbiosis Mediates Intraluminal Agglutination and Alternative Segregation of Enterococcus faecium from the Intestinal Epithelium
title_full_unstemmed Antibiotic-Driven Dysbiosis Mediates Intraluminal Agglutination and Alternative Segregation of Enterococcus faecium from the Intestinal Epithelium
title_short Antibiotic-Driven Dysbiosis Mediates Intraluminal Agglutination and Alternative Segregation of Enterococcus faecium from the Intestinal Epithelium
title_sort antibiotic-driven dysbiosis mediates intraluminal agglutination and alternative segregation of enterococcus faecium from the intestinal epithelium
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4659461/
https://www.ncbi.nlm.nih.gov/pubmed/26556272
http://dx.doi.org/10.1128/mBio.01346-15
work_keys_str_mv AT hendrickxantonipa antibioticdrivendysbiosismediatesintraluminalagglutinationandalternativesegregationofenterococcusfaeciumfromtheintestinalepithelium
AT topjanetta antibioticdrivendysbiosismediatesintraluminalagglutinationandalternativesegregationofenterococcusfaeciumfromtheintestinalepithelium
AT bayjanovjumamuratr antibioticdrivendysbiosismediatesintraluminalagglutinationandalternativesegregationofenterococcusfaeciumfromtheintestinalepithelium
AT kempermanhans antibioticdrivendysbiosismediatesintraluminalagglutinationandalternativesegregationofenterococcusfaeciumfromtheintestinalepithelium
AT rogersmalbertrc antibioticdrivendysbiosismediatesintraluminalagglutinationandalternativesegregationofenterococcusfaeciumfromtheintestinalepithelium
AT paganellifernandal antibioticdrivendysbiosismediatesintraluminalagglutinationandalternativesegregationofenterococcusfaeciumfromtheintestinalepithelium
AT bontenmarcjm antibioticdrivendysbiosismediatesintraluminalagglutinationandalternativesegregationofenterococcusfaeciumfromtheintestinalepithelium
AT willemsrobjl antibioticdrivendysbiosismediatesintraluminalagglutinationandalternativesegregationofenterococcusfaeciumfromtheintestinalepithelium