Cargando…
High-Throughput Quantification of Phenotype Heterogeneity Using Statistical Features
Statistical features are widely used in radiology for tumor heterogeneity assessment using magnetic resonance (MR) imaging technique. In this paper, feature selection based on decision tree is examined to determine the relevant subset of glioblastoma (GBM) phenotypes in the statistical domain. To di...
Autores principales: | Chaddad, Ahmad, Tanougast, Camel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4660016/ https://www.ncbi.nlm.nih.gov/pubmed/26640485 http://dx.doi.org/10.1155/2015/728164 |
Ejemplares similares
-
Texture Analysis of Abnormal Cell Images for Predicting the Continuum of Colorectal Cancer
por: Chaddad, Ahmad, et al.
Publicado: (2017) -
Quantitative evaluation of robust skull stripping and tumor detection applied to axial MR images
por: Chaddad, Ahmad, et al.
Publicado: (2016) -
Hippocampus and amygdala radiomic biomarkers for the study of autism spectrum disorder
por: Chaddad, Ahmad, et al.
Publicado: (2017) -
Multi Texture Analysis of Colorectal Cancer Continuum Using Multispectral Imagery
por: Chaddad, Ahmad, et al.
Publicado: (2016) -
Classifications of Multispectral Colorectal Cancer Tissues Using Convolution Neural Network
por: Haj-Hassan, Hawraa, et al.
Publicado: (2017)