Cargando…
Predictive modeling of structured electronic health records for adverse drug event detection
BACKGROUND: The digitization of healthcare data, resulting from the increasingly widespread adoption of electronic health records, has greatly facilitated its analysis by computational methods and thereby enabled large-scale secondary use thereof. This can be exploited to support public health activ...
Autores principales: | Zhao, Jing, Henriksson, Aron, Asker, Lars, Boström, Henrik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4660129/ https://www.ncbi.nlm.nih.gov/pubmed/26606038 http://dx.doi.org/10.1186/1472-6947-15-S4-S1 |
Ejemplares similares
-
Ensembles of randomized trees using diverse distributed representations of clinical events
por: Henriksson, Aron, et al.
Publicado: (2016) -
Enhancing Adverse Drug Event Detection in Electronic Health Records Using Molecular Structure Similarity: Application to Pancreatitis
por: Vilar, Santiago, et al.
Publicado: (2012) -
Adverse events recording in electronic health record systems in primary care
por: de Hoon, Sabine E. M., et al.
Publicado: (2017) -
Electronic health record-based prediction models for in-hospital adverse drug event diagnosis or prognosis: a systematic review
por: Yasrebi-de Kom, Izak A R, et al.
Publicado: (2023) -
Generalizability of machine learning methods in detecting adverse drug events from clinical narratives in electronic medical records
por: Zitu, Md Muntasir, et al.
Publicado: (2023)