Cargando…

TAL effectors mediate high-efficiency transposition of the piggyBac transposon in silkworm Bombyx mori L

The piggyBac (PB) transposon is one of the most useful transposable elements, and has been successfully used for genetic manipulation in more than a dozen species. However, the efficiency of PB-mediated transposition is still insufficient for many purposes. Here, we present a strategy to enhance tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Ye, Lupeng, You, Zhengying, Qian, Qiujie, Zhang, Yuyu, Che, Jiaqian, Song, Jia, Zhong, Boxiong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4660427/
https://www.ncbi.nlm.nih.gov/pubmed/26608076
http://dx.doi.org/10.1038/srep17172
Descripción
Sumario:The piggyBac (PB) transposon is one of the most useful transposable elements, and has been successfully used for genetic manipulation in more than a dozen species. However, the efficiency of PB-mediated transposition is still insufficient for many purposes. Here, we present a strategy to enhance transposition efficiency using a fusion of transcription activator-like effector (TALE) and the PB transposase (PBase). The results demonstrate that the TALE-PBase fusion protein which is engineered in this study can produce a significantly improved stable transposition efficiency of up to 63.9%, which is at least 7 times higher than the current transposition efficiency in silkworm. Moreover, the average number of transgene-positive individuals increased up to 5.7-fold, with each positive brood containing an average of 18.1 transgenic silkworms. Finally, we demonstrate that TALE-PBase fusion-mediated PB transposition presents a new insertional preference compared with original insertional preference. This method shows a great potential and value for insertional therapy of many genetic diseases. In conclusion, this new and powerful transposition technology will efficiently promote genetic manipulation studies in both invertebrates and vertebrates.