Cargando…

Predicting cytotoxicity of PAMAM dendrimers using molecular descriptors

The use of data mining techniques in the field of nanomedicine has been very limited. In this paper we demonstrate that data mining techniques can be used for the development of predictive models of the cytotoxicity of poly(amido amine) (PAMAM) dendrimers using their chemical and structural properti...

Descripción completa

Detalles Bibliográficos
Autores principales: Jones, David E, Ghandehari, Hamidreza, Facelli, Julio C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4660915/
https://www.ncbi.nlm.nih.gov/pubmed/26665059
http://dx.doi.org/10.3762/bjnano.6.192
_version_ 1782402898346377216
author Jones, David E
Ghandehari, Hamidreza
Facelli, Julio C
author_facet Jones, David E
Ghandehari, Hamidreza
Facelli, Julio C
author_sort Jones, David E
collection PubMed
description The use of data mining techniques in the field of nanomedicine has been very limited. In this paper we demonstrate that data mining techniques can be used for the development of predictive models of the cytotoxicity of poly(amido amine) (PAMAM) dendrimers using their chemical and structural properties. We present predictive models developed using 103 PAMAM dendrimer cytotoxicity values that were extracted from twelve cancer nanomedicine journal articles. The results indicate that data mining and machine learning can be effectively used to predict the cytotoxicity of PAMAM dendrimers on Caco-2 cells.
format Online
Article
Text
id pubmed-4660915
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Beilstein-Institut
record_format MEDLINE/PubMed
spelling pubmed-46609152015-12-09 Predicting cytotoxicity of PAMAM dendrimers using molecular descriptors Jones, David E Ghandehari, Hamidreza Facelli, Julio C Beilstein J Nanotechnol Full Research Paper The use of data mining techniques in the field of nanomedicine has been very limited. In this paper we demonstrate that data mining techniques can be used for the development of predictive models of the cytotoxicity of poly(amido amine) (PAMAM) dendrimers using their chemical and structural properties. We present predictive models developed using 103 PAMAM dendrimer cytotoxicity values that were extracted from twelve cancer nanomedicine journal articles. The results indicate that data mining and machine learning can be effectively used to predict the cytotoxicity of PAMAM dendrimers on Caco-2 cells. Beilstein-Institut 2015-09-11 /pmc/articles/PMC4660915/ /pubmed/26665059 http://dx.doi.org/10.3762/bjnano.6.192 Text en Copyright © 2015, Jones et al. https://creativecommons.org/licenses/by/2.0https://www.beilstein-journals.org/bjnano/termsThis is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms)
spellingShingle Full Research Paper
Jones, David E
Ghandehari, Hamidreza
Facelli, Julio C
Predicting cytotoxicity of PAMAM dendrimers using molecular descriptors
title Predicting cytotoxicity of PAMAM dendrimers using molecular descriptors
title_full Predicting cytotoxicity of PAMAM dendrimers using molecular descriptors
title_fullStr Predicting cytotoxicity of PAMAM dendrimers using molecular descriptors
title_full_unstemmed Predicting cytotoxicity of PAMAM dendrimers using molecular descriptors
title_short Predicting cytotoxicity of PAMAM dendrimers using molecular descriptors
title_sort predicting cytotoxicity of pamam dendrimers using molecular descriptors
topic Full Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4660915/
https://www.ncbi.nlm.nih.gov/pubmed/26665059
http://dx.doi.org/10.3762/bjnano.6.192
work_keys_str_mv AT jonesdavide predictingcytotoxicityofpamamdendrimersusingmoleculardescriptors
AT ghandeharihamidreza predictingcytotoxicityofpamamdendrimersusingmoleculardescriptors
AT facellijulioc predictingcytotoxicityofpamamdendrimersusingmoleculardescriptors