Cargando…
High I(on)/I(off) current ratio graphene field effect transistor: the role of line defect
The present paper casts light upon the performance of an armchair graphene nanoribbon (AGNR) field effect transistor in the presence of one-dimensional topological defects. The defects containing 5–8–5 sp(2)-hybridized carbon rings were placed in a perfect graphene sheet. The atomic scale behavior o...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4660928/ https://www.ncbi.nlm.nih.gov/pubmed/26665077 http://dx.doi.org/10.3762/bjnano.6.210 |
Sumario: | The present paper casts light upon the performance of an armchair graphene nanoribbon (AGNR) field effect transistor in the presence of one-dimensional topological defects. The defects containing 5–8–5 sp(2)-hybridized carbon rings were placed in a perfect graphene sheet. The atomic scale behavior of the transistor was investigated in the non-equilibrium Green's function (NEGF) and tight-binding Hamiltonian frameworks. AGNRFET basic terms such as the on/off current, transconductance and subthreshold swing were investigated along with the extended line defect (ELD). The results indicated that the presence of ELDs had a significant effect on the parameters of the GNRFET. Compared to conventional transistors, the increase of the I(on)/I(off) ratio in graphene transistors with ELDs enhances their applicability in digital devices. |
---|