Cargando…
Detection of Stimulus Displacements Across Saccades is Capacity-Limited and Biased in Favor of the Saccade Target
Retinal image displacements caused by saccadic eye movements are generally unnoticed. Recent theories have proposed that perceptual stability across saccades depends on a local evaluation process centered on the saccade target object rather than on remapping and evaluating the positions of all objec...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661269/ https://www.ncbi.nlm.nih.gov/pubmed/26640430 http://dx.doi.org/10.3389/fnsys.2015.00161 |
_version_ | 1782402953289662464 |
---|---|
author | Irwin, David E. Robinson, Maria M. |
author_facet | Irwin, David E. Robinson, Maria M. |
author_sort | Irwin, David E. |
collection | PubMed |
description | Retinal image displacements caused by saccadic eye movements are generally unnoticed. Recent theories have proposed that perceptual stability across saccades depends on a local evaluation process centered on the saccade target object rather than on remapping and evaluating the positions of all objects in a display. In three experiments, we examined whether objects other than the saccade target also influence perceptual stability by measuring displacement detection thresholds across saccades for saccade targets and a variable number of non-saccade objects. We found that the positions of multiple objects are maintained across saccades, but with variable precision, with the saccade target object having priority in the perception of displacement, most likely because it is the focus of attention before the saccade and resides near the fovea after the saccade. The perception of displacement of objects that are not the saccade target is affected by acuity limitations, attentional limitations, and limitations on memory capacity. Unlike previous studies that have found that a postsaccadic blank improves the detection of displacement direction across saccades, we found that postsaccadic blanking hurt the detection of displacement per se by increasing false alarms. Overall, our results are consistent with the hypothesis that visual working memory underlies the perception of stability across saccades. |
format | Online Article Text |
id | pubmed-4661269 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-46612692015-12-04 Detection of Stimulus Displacements Across Saccades is Capacity-Limited and Biased in Favor of the Saccade Target Irwin, David E. Robinson, Maria M. Front Syst Neurosci Neuroscience Retinal image displacements caused by saccadic eye movements are generally unnoticed. Recent theories have proposed that perceptual stability across saccades depends on a local evaluation process centered on the saccade target object rather than on remapping and evaluating the positions of all objects in a display. In three experiments, we examined whether objects other than the saccade target also influence perceptual stability by measuring displacement detection thresholds across saccades for saccade targets and a variable number of non-saccade objects. We found that the positions of multiple objects are maintained across saccades, but with variable precision, with the saccade target object having priority in the perception of displacement, most likely because it is the focus of attention before the saccade and resides near the fovea after the saccade. The perception of displacement of objects that are not the saccade target is affected by acuity limitations, attentional limitations, and limitations on memory capacity. Unlike previous studies that have found that a postsaccadic blank improves the detection of displacement direction across saccades, we found that postsaccadic blanking hurt the detection of displacement per se by increasing false alarms. Overall, our results are consistent with the hypothesis that visual working memory underlies the perception of stability across saccades. Frontiers Media S.A. 2015-11-27 /pmc/articles/PMC4661269/ /pubmed/26640430 http://dx.doi.org/10.3389/fnsys.2015.00161 Text en Copyright © 2015 Irwin and Robinson. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Irwin, David E. Robinson, Maria M. Detection of Stimulus Displacements Across Saccades is Capacity-Limited and Biased in Favor of the Saccade Target |
title | Detection of Stimulus Displacements Across Saccades is Capacity-Limited and Biased in Favor of the Saccade Target |
title_full | Detection of Stimulus Displacements Across Saccades is Capacity-Limited and Biased in Favor of the Saccade Target |
title_fullStr | Detection of Stimulus Displacements Across Saccades is Capacity-Limited and Biased in Favor of the Saccade Target |
title_full_unstemmed | Detection of Stimulus Displacements Across Saccades is Capacity-Limited and Biased in Favor of the Saccade Target |
title_short | Detection of Stimulus Displacements Across Saccades is Capacity-Limited and Biased in Favor of the Saccade Target |
title_sort | detection of stimulus displacements across saccades is capacity-limited and biased in favor of the saccade target |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661269/ https://www.ncbi.nlm.nih.gov/pubmed/26640430 http://dx.doi.org/10.3389/fnsys.2015.00161 |
work_keys_str_mv | AT irwindavide detectionofstimulusdisplacementsacrosssaccadesiscapacitylimitedandbiasedinfavorofthesaccadetarget AT robinsonmariam detectionofstimulusdisplacementsacrosssaccadesiscapacitylimitedandbiasedinfavorofthesaccadetarget |