Cargando…
Semi-reciprocal polarization maintaining fibre coupler with distinctive transmission characteristics
Optical couplers are very important devices in optical communication systems and optical sensor systems. Several types of optical couplers with different materials or different transmission characteristics have been reported. Here we propose a semi-reciprocal polarization maintaining fibre coupler w...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661516/ https://www.ncbi.nlm.nih.gov/pubmed/26611837 http://dx.doi.org/10.1038/srep17268 |
Sumario: | Optical couplers are very important devices in optical communication systems and optical sensor systems. Several types of optical couplers with different materials or different transmission characteristics have been reported. Here we propose a semi-reciprocal polarization maintaining fibre coupler with unique transmission characteristics, which is distinct from conventional polarization maintaining fibre couplers and polarization beam splitters, and investigate the characteristics of the coupler theoretically and experimentally. The experimental results show that for circularly and elliptically polarized input light, the proposed coupler will act both as an in-line polariser and a conventional polarization maintaining fibre coupler. The output polarization extinction ratio of the transmission arm is 31.79 dB at a centre wavelength of 841 nm. For linearly polarized input light, the coupler will merely act as a conventional 3 dB polarization maintaining fibre coupler. The unique features of the proposed coupler enables the removal of polarisers from optical sensor systems and coherent optical communication systems, and reduces the insertion loss and production cost of the optical path. Therefore there is wide application for this device in optical sensor systems and optical communication systems. |
---|