Cargando…
Trade-Off and Synergy among Ecosystem Services in the Guanzhong-Tianshui Economic Region of China
Natural ecosystems provide society with important goods and services. With rapidly increasing populations and excessive utilization of natural resources, humans have been enhancing the production of some services at the expense of others. Although the need for certain trade-offs between conservation...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661635/ https://www.ncbi.nlm.nih.gov/pubmed/26540068 http://dx.doi.org/10.3390/ijerph121114094 |
Sumario: | Natural ecosystems provide society with important goods and services. With rapidly increasing populations and excessive utilization of natural resources, humans have been enhancing the production of some services at the expense of others. Although the need for certain trade-offs between conservation and development is urgent, having only a small number of efficient methods to assess such trade-offs has impeded progress. This study focuses on the evaluation of ecosystem services under different land use schemes. It reveals the spatial and temporal distributions of and changes in ecosystem services. Based on a correlation rate model and distribution mapping, the trade-offs and synergies of these ecosystem services can be found. Here, we also describe a new simple approach to quantify the relationships of every trade-off and synergy. The results show that all ecosystem services possess trade-offs and synergies in the study area. The trend of improving carbon sequestration and water interception indicate that these key ecosystem services have the strongest synergy. And the decrease in regional agricultural production and other services, except water yield, may be considered as trade-offs. The synergy between water yield and agricultural production was the most significant, while the trade-off between water interception and carbon sequestration was the most apparent, according to our interaction quantification model. The results of this study have implications for planning and monitoring the future management of natural capital and ecosystem services, and can be integrated into land use decision-making. |
---|