Cargando…

Quality Characteristics of PSE-Like Turkey Pectoralis major Muscles Generated by High Post-Mortem Temperature in a Local Turkish Slaughterhouse

The objective of this study was to investigate the effects of high post-mortem temperature application on development of pale, soft, exudative (PSE) turkey meat characteristics in terms of local slaughter conditions. Within this scope, it was targeted to obtain PSE-like muscles benefiting from diffe...

Descripción completa

Detalles Bibliográficos
Autores principales: Öztürk, Burcu, Serdaroǧlu, Meltem
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society for Food Science of Animal Resources 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4662136/
https://www.ncbi.nlm.nih.gov/pubmed/26761875
http://dx.doi.org/10.5851/kosfa.2015.35.4.524
Descripción
Sumario:The objective of this study was to investigate the effects of high post-mortem temperature application on development of pale, soft, exudative (PSE) turkey meat characteristics in terms of local slaughter conditions. Within this scope, it was targeted to obtain PSE-like muscles benefiting from different post-mortem temperature applications. Immediately after slaughter, turkey Pectoralis major (n=15) muscles were kept at various post-mortem temperatures (0, 10, 20, 30, and 40℃) for 5 h. pH values of 40℃ treatment were lower than four other treatments (p<0.05). L* values, drip loss, cook loss, and thawing loss of 40℃ group were higher than the other groups (p< 0.05). Napole yield of 40℃ treatment indicated that high post-mortem temperature decreases brine uptake. Protein solubility of 40℃ group was lower than 0℃ group (p<0.05). Expressible moisture did not differ between 0 and 40℃ treatments. Hardness, gumminess and chewiness of 40℃ treatment were higher than 0℃ treatment. The results of this research showed that high post-mortem temperature treatment induced development of PSE-like turkey meat, with lower pH, paler color, higher technological and storage losses, and reduced protein solubility and texture.