Cargando…
Changes in the Microbiological Characteristics of Korean Native Cattle (Hanwoo) Beef Exposed to Ultraviolet (UV) Irradiation Prior to Refrigeration
The effects of ultraviolet (UV) radiation were investigated with regards to the microbial growth inhibitory effect on the shelf life of Korean native cattle (Hanwoo) beef prior to refrigerated storage. The Hanwoo samples were exposed to UV radiation (4.5 mW/cm(2)) for 0, 5, 10, 15, and 20 min. The U...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society for Food Science of Animal Resources
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4662197/ https://www.ncbi.nlm.nih.gov/pubmed/26761679 http://dx.doi.org/10.5851/kosfa.2014.34.6.815 |
Sumario: | The effects of ultraviolet (UV) radiation were investigated with regards to the microbial growth inhibitory effect on the shelf life of Korean native cattle (Hanwoo) beef prior to refrigerated storage. The Hanwoo samples were exposed to UV radiation (4.5 mW/cm(2)) for 0, 5, 10, 15, and 20 min. The UV-irradiated beef that was exposed for 20 min showed significantly reduced mesophilic and psychrotrophic bacterial populations to the extent of approximately 3 log cycles, as compared to that of non-irradiated beef. About 2.5 Log CFU/g of mesophilic bacteria were different compared with UV-irradiated and nonirradiated meat. UV irradiation showed the most significant growth inhibition effects on mesophilic and psychrotrophic bacteria. Coliform and Gram-negative bacteria were also reduced by 1 log cycle. The population of L. monocytogenes, S. Typhimurium, and E. coli O157:H7 decreased significantly to 53.33, 39.68, and 45.76% after 10 min of UV irradiation. They decreased significantly to 84.64, 80.76, and 84.12%, respectively, after 20 min of UV irradiation. The results show that UV irradiation time and the inhibitory effect were proportional. These results verified that UV radiation prior to refrigeration can effectively reduce the number of pathogenic bacteria on the surface of meat and improve the meat’s microbial safety. |
---|