Cargando…
An Examination of New Paradigms for Spline Approximations
Lavery splines are examined in the univariate and bivariate cases. In both instances relaxation based algorithms for approximate calculation of Lavery splines are proposed. Following previous work Gilsinn, et al. [7] addressing the bivariate case, a rotationally invariant functional is assumed. The...
Autores principales: | Witzgall, Christoph, Gilsinn, David E., McClain, Marjorie A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
[Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4662495/ https://www.ncbi.nlm.nih.gov/pubmed/27274917 http://dx.doi.org/10.6028/jres.111.005 |
Ejemplares similares
-
Multivariate approximation and splines
por: Nürnberger, Günther, et al.
Publicado: (1997) -
Support and approximation properties of Hermite splines
por: Fageot, Julien, et al.
Publicado: (2020) -
Studies in spline functions and approximation theory
por: Karlin, Samuel, et al.
Publicado: (1976) -
Approximation mit Polynomen und Splines
por: Potempa, H
Publicado: (1993) -
The gibbs phenomenon in fourier analysis, splines and wavelet approximations
por: Jerri, Abdul J
Publicado: (1998)