Cargando…
A Hybrid Method for Image Segmentation Based on Artificial Fish Swarm Algorithm and Fuzzy c-Means Clustering
Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM) clustering is one of the popular clustering algorithms for medical image segmentation. However, FCM has the problems of depending on initial clustering centers, falling into local optimal solution easily, and...
Autores principales: | Ma, Li, Li, Yang, Fan, Suohai, Fan, Runzhu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4663300/ https://www.ncbi.nlm.nih.gov/pubmed/26649068 http://dx.doi.org/10.1155/2015/120495 |
Ejemplares similares
-
CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests
por: Ma, Li, et al.
Publicado: (2017) -
Performance evaluation of spatial fuzzy C-means clustering algorithm on GPU for image segmentation
por: Ali, Noureddine Ait, et al.
Publicado: (2022) -
The Comparison of Clustering Algorithms K-Means and Fuzzy C-Means for Segmentation Retinal Blood Vessels
por: Wiharto, Wiharto, et al.
Publicado: (2020) -
Algorithms for fuzzy clustering: methods in c-means clustering with applications
por: Miyamoto, Sadaaki, et al.
Publicado: (2008) -
An Efficient Segmentation and Classification System in Medical Images Using Intuitionist Possibilistic Fuzzy C-Mean Clustering and Fuzzy SVM Algorithm
por: Chowdhary, Chiranji Lal, et al.
Publicado: (2020)