Cargando…
Biomarkers of Eating Disorders Using Support Vector Machine Analysis of Structural Neuroimaging Data: Preliminary Results
Presently, there are no valid biomarkers to identify individuals with eating disorders (ED). The aim of this work was to assess the feasibility of a machine learning method for extracting reliable neuroimaging features allowing individual categorization of patients with ED. Support Vector Machine (S...
Autores principales: | Cerasa, Antonio, Castiglioni, Isabella, Salvatore, Christian, Funaro, Angela, Martino, Iolanda, Alfano, Stefania, Donzuso, Giulia, Perrotta, Paolo, Gioia, Maria Cecilia, Gilardi, Maria Carla, Quattrone, Aldo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4663371/ https://www.ncbi.nlm.nih.gov/pubmed/26648660 http://dx.doi.org/10.1155/2015/924814 |
Ejemplares similares
-
Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach
por: Salvatore, Christian, et al.
Publicado: (2015) -
The neuroanatomical correlates of anxiety in a healthy population: differences between the State-Trait Anxiety Inventory and the Hamilton Anxiety Rating Scale
por: Donzuso, Giulia, et al.
Publicado: (2014) -
Neuroimaging of Essential Tremor: What is the Evidence for Cerebellar Involvement?
por: Passamonti, Luca, et al.
Publicado: (2012) -
Random Forest Algorithm for the Classification of Neuroimaging Data in Alzheimer's Disease: A Systematic Review
por: Sarica, Alessia, et al.
Publicado: (2017) -
Fully Automated Segmentation of the Pons and Midbrain Using Human T1 MR Brain Images
por: Nigro, Salvatore, et al.
Publicado: (2014)