Cargando…

A Note on the Eigensystem of the Covariance Matrix of Dichotomous Guttman Items

We consider the covariance matrix for dichotomous Guttman items under a set of uniformity conditions, and obtain closed-form expressions for the eigenvalues and eigenvectors of the matrix. In particular, we describe the eigenvalues and eigenvectors of the matrix in terms of trigonometric functions o...

Descripción completa

Detalles Bibliográficos
Autores principales: Davis-Stober, Clintin P., Doignon, Jean-Paul, Suck, Reinhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4664651/
https://www.ncbi.nlm.nih.gov/pubmed/26648879
http://dx.doi.org/10.3389/fpsyg.2015.01767
Descripción
Sumario:We consider the covariance matrix for dichotomous Guttman items under a set of uniformity conditions, and obtain closed-form expressions for the eigenvalues and eigenvectors of the matrix. In particular, we describe the eigenvalues and eigenvectors of the matrix in terms of trigonometric functions of the number of items. Our results parallel those of Zwick (1987) for the correlation matrix under the same uniformity conditions. We provide an explanation for certain properties of principal components under Guttman scalability which have been first reported by Guttman (1950).