Cargando…

Mesenchymal stem cells attenuate acute ischemia-reperfusion injury in a rat model

Ischemia-reperfusion injury (IRI) following lung transplantation is associated with increased pulmonary inflammatory responses during reperfusion. Mesenchymal stem cells (MSCs) may be able to modulate inflammatory responses in IRI. The aim of the present study was to evaluate the beneficial effects...

Descripción completa

Detalles Bibliográficos
Autores principales: LU, WEIFENG, SI, YI, DING, JIANYONG, CHEN, XIAOLI, ZHANG, XIANGMAN, DONG, ZHIHUI, FU, WEIGUO
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4665152/
https://www.ncbi.nlm.nih.gov/pubmed/26668605
http://dx.doi.org/10.3892/etm.2015.2806
Descripción
Sumario:Ischemia-reperfusion injury (IRI) following lung transplantation is associated with increased pulmonary inflammatory responses during reperfusion. Mesenchymal stem cells (MSCs) may be able to modulate inflammatory responses in IRI. The aim of the present study was to evaluate the beneficial effects of an intravenous infusion of bone marrow-derived MSCs (BMSCs) in a rat model of pulmonary IRI. IRI was induced in male Lewis rats by 1-h ischemia followed by 2-h reperfusion. The rats received phosphate-buffered saline (PBS) or BMSC infusion at the onset of reperfusion. Pulmonary injury was determined based on the mean blood oxygenation, lung edema and vascular permeability, and performing histopathological examination. Pulmonary inflammation was also evaluated through the examination of the levels of inflammatory cytokines. Compared with the PBS infusion, the BMSC infusion significantly preserved lung function, reduced lung edema and pulmonary microvascular permeability, and decreased the total injury score in rats with IRI. The mRNA levels of the pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, were significantly reduced, while the expression of anti-inflammatory cytokine IL-10 was increased in the rats receiving BMSC infusion. The levels of cytokine-induced neutrophil chemoattractant-1, IL-1β, and TNF-α in bronchoalveolar lavage fluid were also markedly reduced following BMCS infusion. In conclusion, the present results suggested that BMSC infusion exerts protective effects against pulmonary IRI by alleviating IRI-induced inflammation. These findings provide experimental evidence for the treatment of pulmonary IRI using BMSC cell therapy.