Cargando…

Inhibition of caspase-9 by oridonin, a diterpenoid isolated from Rabdosia rubescens, augments apoptosis in human laryngeal cancer cells

Rabdosia rubescens, a commonly used traditional Chinese medicine, has increasingly gained attention for its use as an antitumor herb. Oridonin, a bioactive diterpenoid isolated from Rabdosia rubescens, has been reported to induce apoptosis in human laryngeal cancer HEp-2 cells by our group. Here, we...

Descripción completa

Detalles Bibliográficos
Autores principales: KANG, NING, CAO, SHI-JIE, ZHOU, YAN, HE, HAO, TASHIRO, SHIN-ICHI, ONODERA, SATOSHI, QIU, FENG, IKEJIMA, TAKASHI
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4665153/
https://www.ncbi.nlm.nih.gov/pubmed/26648189
http://dx.doi.org/10.3892/ijo.2015.3186
Descripción
Sumario:Rabdosia rubescens, a commonly used traditional Chinese medicine, has increasingly gained attention for its use as an antitumor herb. Oridonin, a bioactive diterpenoid isolated from Rabdosia rubescens, has been reported to induce apoptosis in human laryngeal cancer HEp-2 cells by our group. Here, we made unexpected observations that the caspase-9 inhibitor (C9i) enhanced apoptosis in response to selected stimuli, and HEp-2 cells which were made deficient in caspase-9 using siRNA exhibited no resistance to apoptotic signals and actually demonstrated increased apoptotic sensitivity to oridonin. The results were reversed by the transfection of an exogenous caspase-9 expression vector. Caspase-9 reduced sensitivity to apoptotic stimuli through reactive oxygen species (ROS)-suppressing and autophagy-promoting methods. ROS triggered the progression of apoptosis through activation of both the caspase-9-independent mitochondrial pathway and death receptor pathways, and the autophagy had an anti-apoptotic function in oridonin-treated HEp-2 cells. These collective results suggest that oridonin targets caspase-9 to alter ROS production and autophagy situation to promote HEp-2 cell apoptosis. Therefore, oridonin has the potential to be developed as an anticancer agent, and the combination of oridonin with those agents leading to reduction of caspase-9 expression in tumor cells could represent a novel approach to human laryngeal cancer treatment.