Cargando…
Increased activity of CHK enhances the radioresistance of MCF-7 breast cancer stem cells
The resistance of breast cancer to radiotherapy remains a major obstacle to successful cancer management. Radiotherapy may result in DNA damage and activate breast cancer stem cells. DNA damage may lead to activation of the checkpoint kinase (CHK) signaling pathway, of which debromohymenialdisine (D...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4665200/ https://www.ncbi.nlm.nih.gov/pubmed/26788148 http://dx.doi.org/10.3892/ol.2015.3777 |
_version_ | 1782403548617637888 |
---|---|
author | YANG, ZHI-XUE SUN, YI-HUI HE, JIAN-GANG CAO, HUA JIANG, GUO-QIN |
author_facet | YANG, ZHI-XUE SUN, YI-HUI HE, JIAN-GANG CAO, HUA JIANG, GUO-QIN |
author_sort | YANG, ZHI-XUE |
collection | PubMed |
description | The resistance of breast cancer to radiotherapy remains a major obstacle to successful cancer management. Radiotherapy may result in DNA damage and activate breast cancer stem cells. DNA damage may lead to activation of the checkpoint kinase (CHK) signaling pathway, of which debromohymenialdisine (DBH) is a specific inhibitor. Radiotherapy also increases the expression of phosphorylated CHK1/2 (pCHK1/2) in the breast cancer cell line, MCF-7, in vitro in a dose-dependent manner. DBH is a relatively stable effective inhibitor that significantly reduces pCHK1/2 expression and MCF-7 proliferation. Low-dose radiotherapy combined with DBH resulted in a higher MCF-7 inhibition rate compared with high-dose radiation alone. This result indicates that the inhibition of the CHK1/2 signal pathway may significantly reduce DNA damage within radiated cells. Radiotherapy may also regulate the proportion of CD44(+)/CD24(−) MCF-7 cancer stem cells in a dose- and time-dependent manner. However, the stem cell proportion of MCF-7 cells was significantly reduced by treatment with DBH. The inhibition is relatively stable and time dependent. Significant reductions were observed after 3 days of culture (P<0.01). The results of the present study indicate that the DBH-induced downregulation of CHK may provide a novel method of enhancing the effect of radiotherapy and reducing stem cell survival in the MCF-7 cell line. |
format | Online Article Text |
id | pubmed-4665200 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-46652002016-01-19 Increased activity of CHK enhances the radioresistance of MCF-7 breast cancer stem cells YANG, ZHI-XUE SUN, YI-HUI HE, JIAN-GANG CAO, HUA JIANG, GUO-QIN Oncol Lett Articles The resistance of breast cancer to radiotherapy remains a major obstacle to successful cancer management. Radiotherapy may result in DNA damage and activate breast cancer stem cells. DNA damage may lead to activation of the checkpoint kinase (CHK) signaling pathway, of which debromohymenialdisine (DBH) is a specific inhibitor. Radiotherapy also increases the expression of phosphorylated CHK1/2 (pCHK1/2) in the breast cancer cell line, MCF-7, in vitro in a dose-dependent manner. DBH is a relatively stable effective inhibitor that significantly reduces pCHK1/2 expression and MCF-7 proliferation. Low-dose radiotherapy combined with DBH resulted in a higher MCF-7 inhibition rate compared with high-dose radiation alone. This result indicates that the inhibition of the CHK1/2 signal pathway may significantly reduce DNA damage within radiated cells. Radiotherapy may also regulate the proportion of CD44(+)/CD24(−) MCF-7 cancer stem cells in a dose- and time-dependent manner. However, the stem cell proportion of MCF-7 cells was significantly reduced by treatment with DBH. The inhibition is relatively stable and time dependent. Significant reductions were observed after 3 days of culture (P<0.01). The results of the present study indicate that the DBH-induced downregulation of CHK may provide a novel method of enhancing the effect of radiotherapy and reducing stem cell survival in the MCF-7 cell line. D.A. Spandidos 2015-12 2015-10-02 /pmc/articles/PMC4665200/ /pubmed/26788148 http://dx.doi.org/10.3892/ol.2015.3777 Text en Copyright: © Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles YANG, ZHI-XUE SUN, YI-HUI HE, JIAN-GANG CAO, HUA JIANG, GUO-QIN Increased activity of CHK enhances the radioresistance of MCF-7 breast cancer stem cells |
title | Increased activity of CHK enhances the radioresistance of MCF-7 breast cancer stem cells |
title_full | Increased activity of CHK enhances the radioresistance of MCF-7 breast cancer stem cells |
title_fullStr | Increased activity of CHK enhances the radioresistance of MCF-7 breast cancer stem cells |
title_full_unstemmed | Increased activity of CHK enhances the radioresistance of MCF-7 breast cancer stem cells |
title_short | Increased activity of CHK enhances the radioresistance of MCF-7 breast cancer stem cells |
title_sort | increased activity of chk enhances the radioresistance of mcf-7 breast cancer stem cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4665200/ https://www.ncbi.nlm.nih.gov/pubmed/26788148 http://dx.doi.org/10.3892/ol.2015.3777 |
work_keys_str_mv | AT yangzhixue increasedactivityofchkenhancestheradioresistanceofmcf7breastcancerstemcells AT sunyihui increasedactivityofchkenhancestheradioresistanceofmcf7breastcancerstemcells AT hejiangang increasedactivityofchkenhancestheradioresistanceofmcf7breastcancerstemcells AT caohua increasedactivityofchkenhancestheradioresistanceofmcf7breastcancerstemcells AT jiangguoqin increasedactivityofchkenhancestheradioresistanceofmcf7breastcancerstemcells |