Cargando…

Anti-candidal activity of a novel peptide derived from human chromogranin A and its mechanism of action against Candida krusei

Candida species (Candida spp.) are important fungal pathogens, which cause numerous clinical diseases associated with significant mortality and morbidity in healthcare settings. In our previous study, we identified a recombinant peptide, chromogranin A (CGA)-N46, corresponding to the N-terminal Pro3...

Descripción completa

Detalles Bibliográficos
Autores principales: LI, RUI-FANG, YAN, XIAO-HUI, LU, YAN-BO, LU, YA-LI, ZHANG, HUI-RU, CHEN, SHI-HUA, LIU, SHUAI, LU, ZHI-FANG
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4665730/
https://www.ncbi.nlm.nih.gov/pubmed/26640548
http://dx.doi.org/10.3892/etm.2015.2731
Descripción
Sumario:Candida species (Candida spp.) are important fungal pathogens, which cause numerous clinical diseases associated with significant mortality and morbidity in healthcare settings. In our previous study, we identified a recombinant peptide, chromogranin A (CGA)-N46, corresponding to the N-terminal Pro31-Gln76 sequence of human CGA, that exhibited antifungal activity against Candida albicans. The present study investigated the antifungal activity of CGA-N46, and its underlying mechanism, against numerous Candida spp. CGA-N46 inhibited the growth of all of the tested Candida spp., of which Candida krusei exhibited the greatest sensitivity. CGA-N46 was able to disrupt the stability of the phospholipid monolayer without damaging the integrity and permeability of the outer membrane of C. krusei cells, and induced cytoplasm vacuolization and mitochondrial damage. In addition, treatment of C. krusei with CGA-N46 was associated with decreased levels of intracellular reactive oxygen species, a reduction in the mitochondrial membrane potential, and DNA synthesis inhibition. The results of the present study suggested that CGA-N46 was able to pass through the cell membrane of Candida spp. by temporarily destabilizing the phospholipid membrane, which in turn led to mitochondrial dysfunction and inhibition of DNA synthesis. Therefore, CGA-N46 may be considered a novel antifungal compound for the treatment of patients with C. krusei infections.