Cargando…

Use of prospective hospital surveillance data to define spatiotemporal heterogeneity of malaria risk in coastal Kenya

BACKGROUND: Malaria in coastal Kenya shows spatial heterogeneity and seasonality, which are important factors to account for when planning an effective control system. Routinely collected data at health facilities can be used as a cost-effective method to acquire information on malaria risk for larg...

Descripción completa

Detalles Bibliográficos
Autores principales: Bisanzio, Donal, Mutuku, Francis, LaBeaud, Angelle D., Mungai, Peter L., Muinde, Jackson, Busaidy, Hajara, Mukoko, Dunstan, King, Charles H., Kitron, Uriel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4665820/
https://www.ncbi.nlm.nih.gov/pubmed/26625721
http://dx.doi.org/10.1186/s12936-015-1006-7
_version_ 1782403621233623040
author Bisanzio, Donal
Mutuku, Francis
LaBeaud, Angelle D.
Mungai, Peter L.
Muinde, Jackson
Busaidy, Hajara
Mukoko, Dunstan
King, Charles H.
Kitron, Uriel
author_facet Bisanzio, Donal
Mutuku, Francis
LaBeaud, Angelle D.
Mungai, Peter L.
Muinde, Jackson
Busaidy, Hajara
Mukoko, Dunstan
King, Charles H.
Kitron, Uriel
author_sort Bisanzio, Donal
collection PubMed
description BACKGROUND: Malaria in coastal Kenya shows spatial heterogeneity and seasonality, which are important factors to account for when planning an effective control system. Routinely collected data at health facilities can be used as a cost-effective method to acquire information on malaria risk for large areas. Here, data collected at one specific hospital in coastal Kenya were used to assess the ability of such passive surveillance to capture spatiotemporal heterogeneity of malaria and effectiveness of an augmented control system. METHODS: Fever cases were tested for malaria at Msambweni sub-County Referral Hospital, Kwale County, Kenya, from October 2012 to March 2015. Remote sensing data were used to classify the development level of each monitored community and to identify the presence of rice fields nearby. An entomological study was performed to acquire data on the seasonality of malaria vectors in the study area. Rainfall data were obtained from a weather station located in proximity of the study area. Spatial analysis was applied to investigate spatial patterns of malarial and non-malarial fever cases. A space–time Bayesian model was performed to evaluate risk factors and identify locations at high malaria risk. Vector seasonality was analysed using a generalized additive mixed model (GAMM). RESULTS: Among the 25,779 tested febrile cases, 28.7 % were positive for Plasmodium infection. Malarial and non-malarial fever cases showed a marked spatial heterogeneity. High risk of malaria was linked to patient age, community development level and presence of rice fields. The peak of malaria prevalence was recorded close to rainy seasons, which correspond to periods of high vector abundance. Results from the Bayesian model identified areas with significantly high malaria risk. The model also showed that the low prevalence of malaria recorded during late 2012 and early 2013 was associated with a large-scale bed net distribution initiative in the study area during mid-2012. CONCLUSIONS: The results indicate that the use of passive surveillance was an effective method to detect spatiotemporal patterns of malaria risk in coastal Kenya. Furthermore, it was possible to estimate the impact of extensive bed net distribution on malaria prevalence among local fever cases over time. Passive surveillance based on georeferenced malaria testing is an important tool that control agencies can use to improve the effectiveness of interventions targeting malaria (and other causes of fever) in such high-risk locations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12936-015-1006-7) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4665820
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-46658202015-12-02 Use of prospective hospital surveillance data to define spatiotemporal heterogeneity of malaria risk in coastal Kenya Bisanzio, Donal Mutuku, Francis LaBeaud, Angelle D. Mungai, Peter L. Muinde, Jackson Busaidy, Hajara Mukoko, Dunstan King, Charles H. Kitron, Uriel Malar J Research BACKGROUND: Malaria in coastal Kenya shows spatial heterogeneity and seasonality, which are important factors to account for when planning an effective control system. Routinely collected data at health facilities can be used as a cost-effective method to acquire information on malaria risk for large areas. Here, data collected at one specific hospital in coastal Kenya were used to assess the ability of such passive surveillance to capture spatiotemporal heterogeneity of malaria and effectiveness of an augmented control system. METHODS: Fever cases were tested for malaria at Msambweni sub-County Referral Hospital, Kwale County, Kenya, from October 2012 to March 2015. Remote sensing data were used to classify the development level of each monitored community and to identify the presence of rice fields nearby. An entomological study was performed to acquire data on the seasonality of malaria vectors in the study area. Rainfall data were obtained from a weather station located in proximity of the study area. Spatial analysis was applied to investigate spatial patterns of malarial and non-malarial fever cases. A space–time Bayesian model was performed to evaluate risk factors and identify locations at high malaria risk. Vector seasonality was analysed using a generalized additive mixed model (GAMM). RESULTS: Among the 25,779 tested febrile cases, 28.7 % were positive for Plasmodium infection. Malarial and non-malarial fever cases showed a marked spatial heterogeneity. High risk of malaria was linked to patient age, community development level and presence of rice fields. The peak of malaria prevalence was recorded close to rainy seasons, which correspond to periods of high vector abundance. Results from the Bayesian model identified areas with significantly high malaria risk. The model also showed that the low prevalence of malaria recorded during late 2012 and early 2013 was associated with a large-scale bed net distribution initiative in the study area during mid-2012. CONCLUSIONS: The results indicate that the use of passive surveillance was an effective method to detect spatiotemporal patterns of malaria risk in coastal Kenya. Furthermore, it was possible to estimate the impact of extensive bed net distribution on malaria prevalence among local fever cases over time. Passive surveillance based on georeferenced malaria testing is an important tool that control agencies can use to improve the effectiveness of interventions targeting malaria (and other causes of fever) in such high-risk locations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12936-015-1006-7) contains supplementary material, which is available to authorized users. BioMed Central 2015-12-01 /pmc/articles/PMC4665820/ /pubmed/26625721 http://dx.doi.org/10.1186/s12936-015-1006-7 Text en © Bisanzio et al. 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Bisanzio, Donal
Mutuku, Francis
LaBeaud, Angelle D.
Mungai, Peter L.
Muinde, Jackson
Busaidy, Hajara
Mukoko, Dunstan
King, Charles H.
Kitron, Uriel
Use of prospective hospital surveillance data to define spatiotemporal heterogeneity of malaria risk in coastal Kenya
title Use of prospective hospital surveillance data to define spatiotemporal heterogeneity of malaria risk in coastal Kenya
title_full Use of prospective hospital surveillance data to define spatiotemporal heterogeneity of malaria risk in coastal Kenya
title_fullStr Use of prospective hospital surveillance data to define spatiotemporal heterogeneity of malaria risk in coastal Kenya
title_full_unstemmed Use of prospective hospital surveillance data to define spatiotemporal heterogeneity of malaria risk in coastal Kenya
title_short Use of prospective hospital surveillance data to define spatiotemporal heterogeneity of malaria risk in coastal Kenya
title_sort use of prospective hospital surveillance data to define spatiotemporal heterogeneity of malaria risk in coastal kenya
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4665820/
https://www.ncbi.nlm.nih.gov/pubmed/26625721
http://dx.doi.org/10.1186/s12936-015-1006-7
work_keys_str_mv AT bisanziodonal useofprospectivehospitalsurveillancedatatodefinespatiotemporalheterogeneityofmalariariskincoastalkenya
AT mutukufrancis useofprospectivehospitalsurveillancedatatodefinespatiotemporalheterogeneityofmalariariskincoastalkenya
AT labeaudangelled useofprospectivehospitalsurveillancedatatodefinespatiotemporalheterogeneityofmalariariskincoastalkenya
AT mungaipeterl useofprospectivehospitalsurveillancedatatodefinespatiotemporalheterogeneityofmalariariskincoastalkenya
AT muindejackson useofprospectivehospitalsurveillancedatatodefinespatiotemporalheterogeneityofmalariariskincoastalkenya
AT busaidyhajara useofprospectivehospitalsurveillancedatatodefinespatiotemporalheterogeneityofmalariariskincoastalkenya
AT mukokodunstan useofprospectivehospitalsurveillancedatatodefinespatiotemporalheterogeneityofmalariariskincoastalkenya
AT kingcharlesh useofprospectivehospitalsurveillancedatatodefinespatiotemporalheterogeneityofmalariariskincoastalkenya
AT kitronuriel useofprospectivehospitalsurveillancedatatodefinespatiotemporalheterogeneityofmalariariskincoastalkenya