Cargando…

A simple strategy for managing many recessive disorders in a dairy cattle breeding program

BACKGROUND: High-density single nucleotide polymorphism genotypes have recently been used to identify a number of novel recessive mutations that adversely affect fertility in dairy cattle, as well as to track other conditions such as red coat color and polled. Most current methods for mate allocatio...

Descripción completa

Detalles Bibliográficos
Autor principal: Cole, John B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666089/
https://www.ncbi.nlm.nih.gov/pubmed/26620491
http://dx.doi.org/10.1186/s12711-015-0174-9
Descripción
Sumario:BACKGROUND: High-density single nucleotide polymorphism genotypes have recently been used to identify a number of novel recessive mutations that adversely affect fertility in dairy cattle, as well as to track other conditions such as red coat color and polled. Most current methods for mate allocation fail to consider this information, and it will become increasingly difficult to manage matings as the number of recessive mutations to be accounted for increases. METHODS: A modified version of a mating strategy that constrains inbreeding based on genomics (the Pryce method) was developed that also accounts for the economic effects of Mendelian disorders on overall economic merit (modified Pryce method) and compared with random mating, truncation selection, and the Pryce scheme. Several scenarios were considered, including scenarios with six hypothetical recessive alleles and 12 recessive alleles that are currently segregating in the US Holstein population. RESULTS: The Pryce method and the modified Pryce method showed similar ability to reduce frequencies of recessive alleles, particularly for loci with frequencies greater than 0.30. The modified Pryce method outperformed the Pryce method for low-frequency alleles with small economic value. Cumulative genetic gain for the selection objective was slightly greater when using the Pryce method, but rates of inbreeding were similar across methods. CONCLUSIONS: The proposed method reduces allele frequencies faster than other methods, and also can be used to maintain or increase the frequency of desirable recessives. It can be easily implemented in software for mate allocation, and the code used in this study is freely available as a reference implementation.