Cargando…
In vivo imaging of axonal transport in murine motor and sensory neurons
BACKGROUND: Axonal transport is essential for neuronal function and survival. Defects in axonal transport have been identified as an early pathological feature in several disorders of the nervous system. The visualisation and quantitative analysis of axonal transport in vivo in rodent models of neur...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier/North-Holland Biomedical Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666412/ https://www.ncbi.nlm.nih.gov/pubmed/26424507 http://dx.doi.org/10.1016/j.jneumeth.2015.09.018 |
_version_ | 1782403705323126784 |
---|---|
author | Gibbs, Katherine L. Kalmar, Bernadett Sleigh, James N. Greensmith, Linda Schiavo, Giampietro |
author_facet | Gibbs, Katherine L. Kalmar, Bernadett Sleigh, James N. Greensmith, Linda Schiavo, Giampietro |
author_sort | Gibbs, Katherine L. |
collection | PubMed |
description | BACKGROUND: Axonal transport is essential for neuronal function and survival. Defects in axonal transport have been identified as an early pathological feature in several disorders of the nervous system. The visualisation and quantitative analysis of axonal transport in vivo in rodent models of neurological disease is therefore crucial to improve our understanding of disease pathogenesis and for the identification of novel therapeutics. NEW METHOD: Here, we describe a method for the in vivo imaging of axonal transport of signalling endosomes in the sciatic nerve of live, anaesthetised mice. RESULTS: This method allows the multiparametric, quantitative analysis of in vivo axonal transport in motor and sensory neurons of adult mice in control conditions and during disease progression. COMPARISON WITH EXISTING METHODS: Previous in vivo imaging of the axonal transport of signalling endosomes has been limited to studies in nerve explant preparations or non-invasive approaches using magnetic resonance imaging; techniques that are hampered by major drawbacks such as tissue damage and low temporal and spatial resolution. This new method allows live imaging of the axonal transport of single endosomes in the sciatic nerve in situ and a more sensitive analysis of axonal transport kinetics than previous approaches. CONCLUSIONS: The method described in this paper allows an in-depth analysis of the characteristics of axonal transport in both motor and sensory neurons in vivo. It enables the detailed study of alterations in axonal transport in rodent models of neurological diseases and can be used to identify novel pharmacological modifiers of axonal transport. |
format | Online Article Text |
id | pubmed-4666412 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Elsevier/North-Holland Biomedical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-46664122016-01-15 In vivo imaging of axonal transport in murine motor and sensory neurons Gibbs, Katherine L. Kalmar, Bernadett Sleigh, James N. Greensmith, Linda Schiavo, Giampietro J Neurosci Methods Basic Neuroscience BACKGROUND: Axonal transport is essential for neuronal function and survival. Defects in axonal transport have been identified as an early pathological feature in several disorders of the nervous system. The visualisation and quantitative analysis of axonal transport in vivo in rodent models of neurological disease is therefore crucial to improve our understanding of disease pathogenesis and for the identification of novel therapeutics. NEW METHOD: Here, we describe a method for the in vivo imaging of axonal transport of signalling endosomes in the sciatic nerve of live, anaesthetised mice. RESULTS: This method allows the multiparametric, quantitative analysis of in vivo axonal transport in motor and sensory neurons of adult mice in control conditions and during disease progression. COMPARISON WITH EXISTING METHODS: Previous in vivo imaging of the axonal transport of signalling endosomes has been limited to studies in nerve explant preparations or non-invasive approaches using magnetic resonance imaging; techniques that are hampered by major drawbacks such as tissue damage and low temporal and spatial resolution. This new method allows live imaging of the axonal transport of single endosomes in the sciatic nerve in situ and a more sensitive analysis of axonal transport kinetics than previous approaches. CONCLUSIONS: The method described in this paper allows an in-depth analysis of the characteristics of axonal transport in both motor and sensory neurons in vivo. It enables the detailed study of alterations in axonal transport in rodent models of neurological diseases and can be used to identify novel pharmacological modifiers of axonal transport. Elsevier/North-Holland Biomedical Press 2016-01-15 /pmc/articles/PMC4666412/ /pubmed/26424507 http://dx.doi.org/10.1016/j.jneumeth.2015.09.018 Text en © 2015 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Basic Neuroscience Gibbs, Katherine L. Kalmar, Bernadett Sleigh, James N. Greensmith, Linda Schiavo, Giampietro In vivo imaging of axonal transport in murine motor and sensory neurons |
title | In vivo imaging of axonal transport in murine motor and sensory neurons |
title_full | In vivo imaging of axonal transport in murine motor and sensory neurons |
title_fullStr | In vivo imaging of axonal transport in murine motor and sensory neurons |
title_full_unstemmed | In vivo imaging of axonal transport in murine motor and sensory neurons |
title_short | In vivo imaging of axonal transport in murine motor and sensory neurons |
title_sort | in vivo imaging of axonal transport in murine motor and sensory neurons |
topic | Basic Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666412/ https://www.ncbi.nlm.nih.gov/pubmed/26424507 http://dx.doi.org/10.1016/j.jneumeth.2015.09.018 |
work_keys_str_mv | AT gibbskatherinel invivoimagingofaxonaltransportinmurinemotorandsensoryneurons AT kalmarbernadett invivoimagingofaxonaltransportinmurinemotorandsensoryneurons AT sleighjamesn invivoimagingofaxonaltransportinmurinemotorandsensoryneurons AT greensmithlinda invivoimagingofaxonaltransportinmurinemotorandsensoryneurons AT schiavogiampietro invivoimagingofaxonaltransportinmurinemotorandsensoryneurons |