Cargando…
Predicting Mental Imagery-Based BCI Performance from Personality, Cognitive Profile and Neurophysiological Patterns
Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy—EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used...
Autores principales: | Jeunet, Camille, N’Kaoua, Bernard, Subramanian, Sriram, Hachet, Martin, Lotte, Fabien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666487/ https://www.ncbi.nlm.nih.gov/pubmed/26625261 http://dx.doi.org/10.1371/journal.pone.0143962 |
Ejemplares similares
-
Correction: Predicting Mental Imagery-Based BCI Performance from Personality, Cognitive Profile and Neurophysiological Patterns
por: Jeunet, Camille, et al.
Publicado: (2023) -
Why we should systematically assess, control and report somatosensory impairments in BCI-based motor rehabilitation after stroke studies
por: Pillette, Léa, et al.
Publicado: (2020) -
Age-Related Differences and Cognitive Correlates of Self-Reported and Direct Navigation Performance: The Effect of Real and Virtual Test Conditions Manipulation
por: Taillade, Mathieu, et al.
Publicado: (2016) -
Long-Term BCI Training of a Tetraplegic User: Adaptive Riemannian Classifiers and User Training
por: Benaroch, Camille, et al.
Publicado: (2021) -
Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI
por: Devlaminck, Dieter, et al.
Publicado: (2011)