Cargando…

Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters

Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the meas...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Zhijian, Liu, Kejun, Li, Hao, Zhang, Xinyu, Jin, Guangya, Cheng, Kewei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666653/
https://www.ncbi.nlm.nih.gov/pubmed/26624613
http://dx.doi.org/10.1371/journal.pone.0143624
Descripción
Sumario:Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.