Cargando…

Relative Influence of Trans-Pacific and Regional Atmospheric Transport of PAHs in the Pacific Northwest, U.S.

[Image: see text] The relative influences of trans-Pacific and regional atmospheric transport on measured concentrations of polycyclic aromatic hydrocarbons (PAHs), PAH derivatives (nitro- (NPAH) and oxy-(OPAH)), organic carbon (OC), and particulate matter (PM) less than 2.5 μm in diameter (PM(2.5))...

Descripción completa

Detalles Bibliográficos
Autores principales: Lafontaine, Scott, Schrlau, Jill, Butler, Jack, Jia, Yuling, Harper, Barbara, Harris, Stuart, Bramer, Lisa M., Waters, Katrina M., Harding, Anna, Simonich, Staci L. Massey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2015
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666789/
https://www.ncbi.nlm.nih.gov/pubmed/26151337
http://dx.doi.org/10.1021/acs.est.5b00800
Descripción
Sumario:[Image: see text] The relative influences of trans-Pacific and regional atmospheric transport on measured concentrations of polycyclic aromatic hydrocarbons (PAHs), PAH derivatives (nitro- (NPAH) and oxy-(OPAH)), organic carbon (OC), and particulate matter (PM) less than 2.5 μm in diameter (PM(2.5)) were investigated in the Pacific Northwest, U.S. in 2010–2011. Ambient high volume PM(2.5) air samples were collected at two sites in the Pacific Northwest: (1.) Mount Bachelor Observatory (MBO) in the Oregon Cascade Range (2763 m above sea level (asl)) and 2.) Confederated Tribes of the Umatilla Indian Reservation (CTUIR) in the Columbia River Gorge (CRG) (954 m asl). At MBO, the 1,8-dinitropyrene concentration was significantly positively correlated with the time a sampled air mass spent over Asia, suggesting that this NPAH may be a good marker for trans-Pacific atmospheric transport. At CTUIR, NO(x), CO(2), and SO(2) emissions from a 585 MW coal fired power plant, in Boardman OR, were found to be significantly positively correlated with PAH, OPAH, NPAH, OC, and PM(2.5) concentrations. By comparing the Boardman Plant operational time frames when the plant was operating to when it was shut down, the plant was found to contribute a large percentage of the measured PAH (67%), NPAH (91%), OPAH (54%), PM(2.5) (39%), and OC (38%) concentrations at CTUIR and the CRG prior to Spring 2011 and likely masked trans-Pacific atmospheric transport events to the CRG. Upgrades installed to the Boardman Plant in the spring of 2011 dramatically reduced the plant’s contribution to PAH and OPAH concentrations (by ∼72% and ∼40%, respectively) at CTUIR and the CRG, but not NPAH, PM(2.5) or OC concentrations.