Cargando…
Heterochromatin components in germline stem cell maintenance
Stem cell maintenance requires expression of genes essential for stemness and repression of differentiation genes. How this is achieved remains incompletely understood. Here we investigate the requirement for central components of heterochromatin, Heterochromatin Protein 1 (HP1) and the histone H3 l...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667240/ https://www.ncbi.nlm.nih.gov/pubmed/26626305 http://dx.doi.org/10.1038/srep17463 |
Sumario: | Stem cell maintenance requires expression of genes essential for stemness and repression of differentiation genes. How this is achieved remains incompletely understood. Here we investigate the requirement for central components of heterochromatin, Heterochromatin Protein 1 (HP1) and the histone H3 lys9 methyltransferase Su(var)3-9, in the Drosophila male germline stem cell (GSC) self-renewal, a paradigm for studying adult stem cell behavior. We found that mutations or RNAi knock down of HP1 or Su(var)3-9 cause loss of GSCs, accompanied by defects in cell division or survival and premature expression of the differentiation gene bag of marbles (bam). Conversely, over-expressing HP1 increases GSC number in wildtype flies and, strikingly, restores fertility to the sterile hopscotch (hop) mutant flies that lack niche signals. These results suggest that the central components of heterochromatin play roles including repressing differentiation genes in Drosophila male GSC maintenance. |
---|