Cargando…

Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes

Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (...

Descripción completa

Detalles Bibliográficos
Autores principales: Farrell, Alan C., Senanayake, Pradeep, Hung, Chung-Hong, El-Howayek, Georges, Rajagopal, Abhejit, Currie, Marc, Hayat, Majeed M., Huffaker, Diana L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667247/
https://www.ncbi.nlm.nih.gov/pubmed/26627932
http://dx.doi.org/10.1038/srep17580
_version_ 1782403809705721856
author Farrell, Alan C.
Senanayake, Pradeep
Hung, Chung-Hong
El-Howayek, Georges
Rajagopal, Abhejit
Currie, Marc
Hayat, Majeed M.
Huffaker, Diana L.
author_facet Farrell, Alan C.
Senanayake, Pradeep
Hung, Chung-Hong
El-Howayek, Georges
Rajagopal, Abhejit
Currie, Marc
Hayat, Majeed M.
Huffaker, Diana L.
author_sort Farrell, Alan C.
collection PubMed
description Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III–V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure.
format Online
Article
Text
id pubmed-4667247
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-46672472015-12-08 Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes Farrell, Alan C. Senanayake, Pradeep Hung, Chung-Hong El-Howayek, Georges Rajagopal, Abhejit Currie, Marc Hayat, Majeed M. Huffaker, Diana L. Sci Rep Article Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III–V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure. Nature Publishing Group 2015-12-02 /pmc/articles/PMC4667247/ /pubmed/26627932 http://dx.doi.org/10.1038/srep17580 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Farrell, Alan C.
Senanayake, Pradeep
Hung, Chung-Hong
El-Howayek, Georges
Rajagopal, Abhejit
Currie, Marc
Hayat, Majeed M.
Huffaker, Diana L.
Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes
title Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes
title_full Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes
title_fullStr Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes
title_full_unstemmed Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes
title_short Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes
title_sort plasmonic field confinement for separate absorption-multiplication in ingaas nanopillar avalanche photodiodes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667247/
https://www.ncbi.nlm.nih.gov/pubmed/26627932
http://dx.doi.org/10.1038/srep17580
work_keys_str_mv AT farrellalanc plasmonicfieldconfinementforseparateabsorptionmultiplicationiningaasnanopillaravalanchephotodiodes
AT senanayakepradeep plasmonicfieldconfinementforseparateabsorptionmultiplicationiningaasnanopillaravalanchephotodiodes
AT hungchunghong plasmonicfieldconfinementforseparateabsorptionmultiplicationiningaasnanopillaravalanchephotodiodes
AT elhowayekgeorges plasmonicfieldconfinementforseparateabsorptionmultiplicationiningaasnanopillaravalanchephotodiodes
AT rajagopalabhejit plasmonicfieldconfinementforseparateabsorptionmultiplicationiningaasnanopillaravalanchephotodiodes
AT curriemarc plasmonicfieldconfinementforseparateabsorptionmultiplicationiningaasnanopillaravalanchephotodiodes
AT hayatmajeedm plasmonicfieldconfinementforseparateabsorptionmultiplicationiningaasnanopillaravalanchephotodiodes
AT huffakerdianal plasmonicfieldconfinementforseparateabsorptionmultiplicationiningaasnanopillaravalanchephotodiodes