Cargando…
Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes
Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667247/ https://www.ncbi.nlm.nih.gov/pubmed/26627932 http://dx.doi.org/10.1038/srep17580 |
_version_ | 1782403809705721856 |
---|---|
author | Farrell, Alan C. Senanayake, Pradeep Hung, Chung-Hong El-Howayek, Georges Rajagopal, Abhejit Currie, Marc Hayat, Majeed M. Huffaker, Diana L. |
author_facet | Farrell, Alan C. Senanayake, Pradeep Hung, Chung-Hong El-Howayek, Georges Rajagopal, Abhejit Currie, Marc Hayat, Majeed M. Huffaker, Diana L. |
author_sort | Farrell, Alan C. |
collection | PubMed |
description | Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III–V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure. |
format | Online Article Text |
id | pubmed-4667247 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-46672472015-12-08 Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes Farrell, Alan C. Senanayake, Pradeep Hung, Chung-Hong El-Howayek, Georges Rajagopal, Abhejit Currie, Marc Hayat, Majeed M. Huffaker, Diana L. Sci Rep Article Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III–V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure. Nature Publishing Group 2015-12-02 /pmc/articles/PMC4667247/ /pubmed/26627932 http://dx.doi.org/10.1038/srep17580 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Farrell, Alan C. Senanayake, Pradeep Hung, Chung-Hong El-Howayek, Georges Rajagopal, Abhejit Currie, Marc Hayat, Majeed M. Huffaker, Diana L. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes |
title | Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes |
title_full | Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes |
title_fullStr | Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes |
title_full_unstemmed | Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes |
title_short | Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes |
title_sort | plasmonic field confinement for separate absorption-multiplication in ingaas nanopillar avalanche photodiodes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667247/ https://www.ncbi.nlm.nih.gov/pubmed/26627932 http://dx.doi.org/10.1038/srep17580 |
work_keys_str_mv | AT farrellalanc plasmonicfieldconfinementforseparateabsorptionmultiplicationiningaasnanopillaravalanchephotodiodes AT senanayakepradeep plasmonicfieldconfinementforseparateabsorptionmultiplicationiningaasnanopillaravalanchephotodiodes AT hungchunghong plasmonicfieldconfinementforseparateabsorptionmultiplicationiningaasnanopillaravalanchephotodiodes AT elhowayekgeorges plasmonicfieldconfinementforseparateabsorptionmultiplicationiningaasnanopillaravalanchephotodiodes AT rajagopalabhejit plasmonicfieldconfinementforseparateabsorptionmultiplicationiningaasnanopillaravalanchephotodiodes AT curriemarc plasmonicfieldconfinementforseparateabsorptionmultiplicationiningaasnanopillaravalanchephotodiodes AT hayatmajeedm plasmonicfieldconfinementforseparateabsorptionmultiplicationiningaasnanopillaravalanchephotodiodes AT huffakerdianal plasmonicfieldconfinementforseparateabsorptionmultiplicationiningaasnanopillaravalanchephotodiodes |