Cargando…

Proposal for a room-temperature diamond maser

The application of masers is limited by its demanding working conditions (high vacuum or low temperature). A room-temperature solid-state maser is highly desirable, but the lifetimes of emitters (electron spins) in solids at room temperature are usually too short (∼ns) for population inversion. Masi...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Liang, Pfender, Matthias, Aslam, Nabeel, Neumann, Philipp, Yang, Sen, Wrachtrup, Jörg, Liu, Ren-Bao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667537/
https://www.ncbi.nlm.nih.gov/pubmed/26394758
http://dx.doi.org/10.1038/ncomms9251
Descripción
Sumario:The application of masers is limited by its demanding working conditions (high vacuum or low temperature). A room-temperature solid-state maser is highly desirable, but the lifetimes of emitters (electron spins) in solids at room temperature are usually too short (∼ns) for population inversion. Masing from pentacene spins in p-terphenyl crystals, which have a long spin lifetime (∼0.1 ms), has been demonstrated. This maser, however, operates only in the pulsed mode. Here we propose a room-temperature maser based on nitrogen-vacancy centres in diamond, which features the longest known solid-state spin lifetime (∼5 ms) at room temperature, high optical pumping efficiency (∼10(6) s(−1)) and material stability. Our numerical simulation demonstrates that a maser with a coherence time of approximately minutes is feasible under readily accessible conditions (cavity Q-factor ∼5 × 10(4), diamond size ∼3 × 3 × 0.5 mm(3) and pump power <10 W). A room-temperature diamond maser may facilitate a broad range of microwave technologies.