Cargando…

Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots

Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geomet...

Descripción completa

Detalles Bibliográficos
Autores principales: House, M. G., Kobayashi, T., Weber, B., Hile, S. J., Watson, T. F., van der Heijden, J., Rogge, S., Simmons, M. Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667619/
https://www.ncbi.nlm.nih.gov/pubmed/26548556
http://dx.doi.org/10.1038/ncomms9848
_version_ 1782403863191486464
author House, M. G.
Kobayashi, T.
Weber, B.
Hile, S. J.
Watson, T. F.
van der Heijden, J.
Rogge, S.
Simmons, M. Y.
author_facet House, M. G.
Kobayashi, T.
Weber, B.
Hile, S. J.
Watson, T. F.
van der Heijden, J.
Rogge, S.
Simmons, M. Y.
author_sort House, M. G.
collection PubMed
description Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet–triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot–lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon.
format Online
Article
Text
id pubmed-4667619
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-46676192015-12-10 Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots House, M. G. Kobayashi, T. Weber, B. Hile, S. J. Watson, T. F. van der Heijden, J. Rogge, S. Simmons, M. Y. Nat Commun Article Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet–triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot–lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon. Nature Pub. Group 2015-11-09 /pmc/articles/PMC4667619/ /pubmed/26548556 http://dx.doi.org/10.1038/ncomms9848 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
House, M. G.
Kobayashi, T.
Weber, B.
Hile, S. J.
Watson, T. F.
van der Heijden, J.
Rogge, S.
Simmons, M. Y.
Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots
title Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots
title_full Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots
title_fullStr Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots
title_full_unstemmed Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots
title_short Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots
title_sort radio frequency measurements of tunnel couplings and singlet–triplet spin states in si:p quantum dots
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667619/
https://www.ncbi.nlm.nih.gov/pubmed/26548556
http://dx.doi.org/10.1038/ncomms9848
work_keys_str_mv AT housemg radiofrequencymeasurementsoftunnelcouplingsandsinglettripletspinstatesinsipquantumdots
AT kobayashit radiofrequencymeasurementsoftunnelcouplingsandsinglettripletspinstatesinsipquantumdots
AT weberb radiofrequencymeasurementsoftunnelcouplingsandsinglettripletspinstatesinsipquantumdots
AT hilesj radiofrequencymeasurementsoftunnelcouplingsandsinglettripletspinstatesinsipquantumdots
AT watsontf radiofrequencymeasurementsoftunnelcouplingsandsinglettripletspinstatesinsipquantumdots
AT vanderheijdenj radiofrequencymeasurementsoftunnelcouplingsandsinglettripletspinstatesinsipquantumdots
AT rogges radiofrequencymeasurementsoftunnelcouplingsandsinglettripletspinstatesinsipquantumdots
AT simmonsmy radiofrequencymeasurementsoftunnelcouplingsandsinglettripletspinstatesinsipquantumdots