Cargando…

Direct evidence for a pressure-induced nodal superconducting gap in the Ba(0.65)Rb(0.35)Fe(2)As(2) superconductor

The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. In contrast to other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different...

Descripción completa

Detalles Bibliográficos
Autores principales: Guguchia, Z., Amato, A., Kang, J., Luetkens, H., Biswas, P. K., Prando, G., von Rohr, F., Bukowski, Z., Shengelaya, A., Keller, H., Morenzoni, E., Fernandes, Rafael M., Khasanov, R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667685/
https://www.ncbi.nlm.nih.gov/pubmed/26548650
http://dx.doi.org/10.1038/ncomms9863
_version_ 1782403876840800256
author Guguchia, Z.
Amato, A.
Kang, J.
Luetkens, H.
Biswas, P. K.
Prando, G.
von Rohr, F.
Bukowski, Z.
Shengelaya, A.
Keller, H.
Morenzoni, E.
Fernandes, Rafael M.
Khasanov, R.
author_facet Guguchia, Z.
Amato, A.
Kang, J.
Luetkens, H.
Biswas, P. K.
Prando, G.
von Rohr, F.
Bukowski, Z.
Shengelaya, A.
Keller, H.
Morenzoni, E.
Fernandes, Rafael M.
Khasanov, R.
author_sort Guguchia, Z.
collection PubMed
description The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. In contrast to other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba(0.65)Rb(0.35)Fe(2)As(2). Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap.
format Online
Article
Text
id pubmed-4667685
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-46676852015-12-10 Direct evidence for a pressure-induced nodal superconducting gap in the Ba(0.65)Rb(0.35)Fe(2)As(2) superconductor Guguchia, Z. Amato, A. Kang, J. Luetkens, H. Biswas, P. K. Prando, G. von Rohr, F. Bukowski, Z. Shengelaya, A. Keller, H. Morenzoni, E. Fernandes, Rafael M. Khasanov, R. Nat Commun Article The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. In contrast to other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba(0.65)Rb(0.35)Fe(2)As(2). Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap. Nature Pub. Group 2015-11-09 /pmc/articles/PMC4667685/ /pubmed/26548650 http://dx.doi.org/10.1038/ncomms9863 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Guguchia, Z.
Amato, A.
Kang, J.
Luetkens, H.
Biswas, P. K.
Prando, G.
von Rohr, F.
Bukowski, Z.
Shengelaya, A.
Keller, H.
Morenzoni, E.
Fernandes, Rafael M.
Khasanov, R.
Direct evidence for a pressure-induced nodal superconducting gap in the Ba(0.65)Rb(0.35)Fe(2)As(2) superconductor
title Direct evidence for a pressure-induced nodal superconducting gap in the Ba(0.65)Rb(0.35)Fe(2)As(2) superconductor
title_full Direct evidence for a pressure-induced nodal superconducting gap in the Ba(0.65)Rb(0.35)Fe(2)As(2) superconductor
title_fullStr Direct evidence for a pressure-induced nodal superconducting gap in the Ba(0.65)Rb(0.35)Fe(2)As(2) superconductor
title_full_unstemmed Direct evidence for a pressure-induced nodal superconducting gap in the Ba(0.65)Rb(0.35)Fe(2)As(2) superconductor
title_short Direct evidence for a pressure-induced nodal superconducting gap in the Ba(0.65)Rb(0.35)Fe(2)As(2) superconductor
title_sort direct evidence for a pressure-induced nodal superconducting gap in the ba(0.65)rb(0.35)fe(2)as(2) superconductor
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667685/
https://www.ncbi.nlm.nih.gov/pubmed/26548650
http://dx.doi.org/10.1038/ncomms9863
work_keys_str_mv AT guguchiaz directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor
AT amatoa directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor
AT kangj directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor
AT luetkensh directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor
AT biswaspk directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor
AT prandog directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor
AT vonrohrf directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor
AT bukowskiz directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor
AT shengelayaa directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor
AT kellerh directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor
AT morenzonie directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor
AT fernandesrafaelm directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor
AT khasanovr directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor