Cargando…
Direct evidence for a pressure-induced nodal superconducting gap in the Ba(0.65)Rb(0.35)Fe(2)As(2) superconductor
The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. In contrast to other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667685/ https://www.ncbi.nlm.nih.gov/pubmed/26548650 http://dx.doi.org/10.1038/ncomms9863 |
_version_ | 1782403876840800256 |
---|---|
author | Guguchia, Z. Amato, A. Kang, J. Luetkens, H. Biswas, P. K. Prando, G. von Rohr, F. Bukowski, Z. Shengelaya, A. Keller, H. Morenzoni, E. Fernandes, Rafael M. Khasanov, R. |
author_facet | Guguchia, Z. Amato, A. Kang, J. Luetkens, H. Biswas, P. K. Prando, G. von Rohr, F. Bukowski, Z. Shengelaya, A. Keller, H. Morenzoni, E. Fernandes, Rafael M. Khasanov, R. |
author_sort | Guguchia, Z. |
collection | PubMed |
description | The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. In contrast to other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba(0.65)Rb(0.35)Fe(2)As(2). Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap. |
format | Online Article Text |
id | pubmed-4667685 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Pub. Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-46676852015-12-10 Direct evidence for a pressure-induced nodal superconducting gap in the Ba(0.65)Rb(0.35)Fe(2)As(2) superconductor Guguchia, Z. Amato, A. Kang, J. Luetkens, H. Biswas, P. K. Prando, G. von Rohr, F. Bukowski, Z. Shengelaya, A. Keller, H. Morenzoni, E. Fernandes, Rafael M. Khasanov, R. Nat Commun Article The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. In contrast to other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba(0.65)Rb(0.35)Fe(2)As(2). Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap. Nature Pub. Group 2015-11-09 /pmc/articles/PMC4667685/ /pubmed/26548650 http://dx.doi.org/10.1038/ncomms9863 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Guguchia, Z. Amato, A. Kang, J. Luetkens, H. Biswas, P. K. Prando, G. von Rohr, F. Bukowski, Z. Shengelaya, A. Keller, H. Morenzoni, E. Fernandes, Rafael M. Khasanov, R. Direct evidence for a pressure-induced nodal superconducting gap in the Ba(0.65)Rb(0.35)Fe(2)As(2) superconductor |
title | Direct evidence for a pressure-induced nodal superconducting gap in the Ba(0.65)Rb(0.35)Fe(2)As(2) superconductor |
title_full | Direct evidence for a pressure-induced nodal superconducting gap in the Ba(0.65)Rb(0.35)Fe(2)As(2) superconductor |
title_fullStr | Direct evidence for a pressure-induced nodal superconducting gap in the Ba(0.65)Rb(0.35)Fe(2)As(2) superconductor |
title_full_unstemmed | Direct evidence for a pressure-induced nodal superconducting gap in the Ba(0.65)Rb(0.35)Fe(2)As(2) superconductor |
title_short | Direct evidence for a pressure-induced nodal superconducting gap in the Ba(0.65)Rb(0.35)Fe(2)As(2) superconductor |
title_sort | direct evidence for a pressure-induced nodal superconducting gap in the ba(0.65)rb(0.35)fe(2)as(2) superconductor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667685/ https://www.ncbi.nlm.nih.gov/pubmed/26548650 http://dx.doi.org/10.1038/ncomms9863 |
work_keys_str_mv | AT guguchiaz directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor AT amatoa directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor AT kangj directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor AT luetkensh directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor AT biswaspk directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor AT prandog directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor AT vonrohrf directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor AT bukowskiz directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor AT shengelayaa directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor AT kellerh directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor AT morenzonie directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor AT fernandesrafaelm directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor AT khasanovr directevidenceforapressureinducednodalsuperconductinggapintheba065rb035fe2as2superconductor |