Cargando…
Dynamics of Chytridiomycosis during the Breeding Season in an Australian Alpine Amphibian
Understanding disease dynamics during the breeding season of declining amphibian species will improve our understanding of how remnant populations persist with endemic infection, and will assist the development of management techniques to protect disease-threatened species from extinction. We monito...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668081/ https://www.ncbi.nlm.nih.gov/pubmed/26629993 http://dx.doi.org/10.1371/journal.pone.0143629 |
_version_ | 1782403929948028928 |
---|---|
author | Brannelly, Laura A. Hunter, David A. Lenger, Daniel Scheele, Ben C. Skerratt, Lee F. Berger, Lee |
author_facet | Brannelly, Laura A. Hunter, David A. Lenger, Daniel Scheele, Ben C. Skerratt, Lee F. Berger, Lee |
author_sort | Brannelly, Laura A. |
collection | PubMed |
description | Understanding disease dynamics during the breeding season of declining amphibian species will improve our understanding of how remnant populations persist with endemic infection, and will assist the development of management techniques to protect disease-threatened species from extinction. We monitored the endangered Litoria verreauxii alpina (alpine treefrog) during the breeding season through capture-mark-recapture (CMR) studies in which we investigated the dynamics of chytridiomycosis in relation to population size in two populations. We found that infection prevalence and intensity increased throughout the breeding season in both populations, but infection prevalence and intensity was higher (3.49 and 2.02 times higher prevalence and intensity, respectively) at the site that had a 90-fold higher population density. This suggests that Bd transmission is density-dependent. Weekly survival probability was related to disease state, with heavily infected animals having the lowest survival. There was low recovery from infection, especially when animals were heavily infected with Bd. Sympatric amphibian species are likely to be reservoir hosts for the disease and can play an important role in the disease ecology of Bd. Although we found 0% prevalence in crayfish (Cherax destructor), we found that a sympatric amphibian (Crinia signifera) maintained 100% infection prevalence at a high intensity throughout the season. Our results demonstrate the importance of including infection intensity into CMR disease analysis in order to fully understand the implications of disease on the amphibian community. We recommend a combined management approach to promote lower population densities and ensure consistent progeny survival. The most effective management strategy to safeguard the persistence of this susceptible species might be to increase habitat area while maintaining a similar sized suitable breeding zone and to increase water flow and area to reduce drought. |
format | Online Article Text |
id | pubmed-4668081 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-46680812015-12-10 Dynamics of Chytridiomycosis during the Breeding Season in an Australian Alpine Amphibian Brannelly, Laura A. Hunter, David A. Lenger, Daniel Scheele, Ben C. Skerratt, Lee F. Berger, Lee PLoS One Research Article Understanding disease dynamics during the breeding season of declining amphibian species will improve our understanding of how remnant populations persist with endemic infection, and will assist the development of management techniques to protect disease-threatened species from extinction. We monitored the endangered Litoria verreauxii alpina (alpine treefrog) during the breeding season through capture-mark-recapture (CMR) studies in which we investigated the dynamics of chytridiomycosis in relation to population size in two populations. We found that infection prevalence and intensity increased throughout the breeding season in both populations, but infection prevalence and intensity was higher (3.49 and 2.02 times higher prevalence and intensity, respectively) at the site that had a 90-fold higher population density. This suggests that Bd transmission is density-dependent. Weekly survival probability was related to disease state, with heavily infected animals having the lowest survival. There was low recovery from infection, especially when animals were heavily infected with Bd. Sympatric amphibian species are likely to be reservoir hosts for the disease and can play an important role in the disease ecology of Bd. Although we found 0% prevalence in crayfish (Cherax destructor), we found that a sympatric amphibian (Crinia signifera) maintained 100% infection prevalence at a high intensity throughout the season. Our results demonstrate the importance of including infection intensity into CMR disease analysis in order to fully understand the implications of disease on the amphibian community. We recommend a combined management approach to promote lower population densities and ensure consistent progeny survival. The most effective management strategy to safeguard the persistence of this susceptible species might be to increase habitat area while maintaining a similar sized suitable breeding zone and to increase water flow and area to reduce drought. Public Library of Science 2015-12-02 /pmc/articles/PMC4668081/ /pubmed/26629993 http://dx.doi.org/10.1371/journal.pone.0143629 Text en © 2015 Brannelly et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Brannelly, Laura A. Hunter, David A. Lenger, Daniel Scheele, Ben C. Skerratt, Lee F. Berger, Lee Dynamics of Chytridiomycosis during the Breeding Season in an Australian Alpine Amphibian |
title | Dynamics of Chytridiomycosis during the Breeding Season in an Australian Alpine Amphibian |
title_full | Dynamics of Chytridiomycosis during the Breeding Season in an Australian Alpine Amphibian |
title_fullStr | Dynamics of Chytridiomycosis during the Breeding Season in an Australian Alpine Amphibian |
title_full_unstemmed | Dynamics of Chytridiomycosis during the Breeding Season in an Australian Alpine Amphibian |
title_short | Dynamics of Chytridiomycosis during the Breeding Season in an Australian Alpine Amphibian |
title_sort | dynamics of chytridiomycosis during the breeding season in an australian alpine amphibian |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668081/ https://www.ncbi.nlm.nih.gov/pubmed/26629993 http://dx.doi.org/10.1371/journal.pone.0143629 |
work_keys_str_mv | AT brannellylauraa dynamicsofchytridiomycosisduringthebreedingseasoninanaustralianalpineamphibian AT hunterdavida dynamicsofchytridiomycosisduringthebreedingseasoninanaustralianalpineamphibian AT lengerdaniel dynamicsofchytridiomycosisduringthebreedingseasoninanaustralianalpineamphibian AT scheelebenc dynamicsofchytridiomycosisduringthebreedingseasoninanaustralianalpineamphibian AT skerrattleef dynamicsofchytridiomycosisduringthebreedingseasoninanaustralianalpineamphibian AT bergerlee dynamicsofchytridiomycosisduringthebreedingseasoninanaustralianalpineamphibian |