Cargando…

The influence of various resistance loads on the ratio of activity of the external rotator muscles of the shoulder and the anterior gliding of the humeral head during external rotation exercise

[Purpose] To quantify the ratio of activation of the infraspinatus and posterior deltoid muscles and the anterior gliding motion of the humeral head during external rotation (ER) motions of the shoulder performed in prone position against different external resistance loads. [Subjects] Twenty health...

Descripción completa

Detalles Bibliográficos
Autores principales: Jo, Marg-Eun, Lee, Seung-Min, Jang, Jun-Hyeok, Lee, Sang-Yeol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Society of Physical Therapy Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668174/
https://www.ncbi.nlm.nih.gov/pubmed/26644683
http://dx.doi.org/10.1589/jpts.27.3241
Descripción
Sumario:[Purpose] To quantify the ratio of activation of the infraspinatus and posterior deltoid muscles and the anterior gliding motion of the humeral head during external rotation (ER) motions of the shoulder performed in prone position against different external resistance loads. [Subjects] Twenty healthy women between the ages of 20 and 30 years. [Methods] Activity ratio was quantified as the difference in the root mean square of the smoothed electromyography signal (EMG) of the posterior deltoid to the infraspinatus muscle, and anterior gliding pressure of the humeral head using a pressure biofeedback unit (PBU), for three resistance loads: 0, 1 and 2 kg. [Results] There was a significant correlation among all three variables (load, ratio, and pressure). Anterior gliding pressure correlated with the activity ratio, with activity of the posterior deltoid increasing with the magnitude of the resistance load. [Conclusion] There was a positive association between the magnitude of resistance load, activity of the posterior deltoid and anterior gliding pressure of the humeral head. The PBU could be used to facilitate the recruitment of the infraspinatus muscle at higher loads to improve glenohumeral joint stability during ER exercise against higher resistance.