Cargando…
Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer
INTRODUCTION: “Radiomics” extracts and mines a large number of medical imaging features in a non-invasive and cost-effective way. The underlying assumption of radiomics is that these imaging features quantify phenotypic characteristics of an entire tumor. In order to enhance applicability of radiomi...
Autores principales: | Parmar, Chintan, Grossmann, Patrick, Rietveld, Derek, Rietbergen, Michelle M., Lambin, Philippe, Aerts, Hugo J. W. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668290/ https://www.ncbi.nlm.nih.gov/pubmed/26697407 http://dx.doi.org/10.3389/fonc.2015.00272 |
Ejemplares similares
-
Radiomic feature clusters and Prognostic Signatures specific for Lung and Head & Neck cancer
por: Parmar, Chintan, et al.
Publicado: (2015) -
Exploratory Study to Identify Radiomics Classifiers for Lung Cancer Histology
por: Wu, Weimiao, et al.
Publicado: (2016) -
Machine Learning methods for Quantitative Radiomic Biomarkers
por: Parmar, Chintan, et al.
Publicado: (2015) -
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
por: Aerts, Hugo J. W. L., et al.
Publicado: (2014) -
Radiomics and Machine Learning for Radiotherapy in Head and Neck Cancers
por: Giraud, Paul, et al.
Publicado: (2019)