Cargando…

Determination of Cefoperazone Sodium in Presence of Related Impurities by Linear Support Vector Regression and Partial Least Squares Chemometric Models

A comparison between partial least squares regression and support vector regression chemometric models is introduced in this study. The two models are implemented to analyze cefoperazone sodium in presence of its reported impurities, 7-aminocephalosporanic acid and 5-mercapto-1-methyl-tetrazole, in...

Descripción completa

Detalles Bibliográficos
Autores principales: Naguib, Ibrahim A., Abdelaleem, Eglal A., Zaazaa, Hala E., Hussein, Essraa A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668319/
https://www.ncbi.nlm.nih.gov/pubmed/26664764
http://dx.doi.org/10.1155/2015/593892
Descripción
Sumario:A comparison between partial least squares regression and support vector regression chemometric models is introduced in this study. The two models are implemented to analyze cefoperazone sodium in presence of its reported impurities, 7-aminocephalosporanic acid and 5-mercapto-1-methyl-tetrazole, in pure powders and in pharmaceutical formulations through processing UV spectroscopic data. For best results, a 3-factor 4-level experimental design was used, resulting in a training set of 16 mixtures containing different ratios of interfering moieties. For method validation, an independent test set consisting of 9 mixtures was used to test predictive ability of established models. The introduced results show the capability of the two proposed models to analyze cefoperazone in presence of its impurities 7-aminocephalosporanic acid and 5-mercapto-1-methyl-tetrazole with high trueness and selectivity (101.87 ± 0.708 and 101.43 ± 0.536 for PLSR and linear SVR, resp.). Analysis results of drug products were statistically compared to a reported HPLC method showing no significant difference in trueness and precision, indicating the capability of the suggested multivariate calibration models to be reliable and adequate for routine quality control analysis of drug product. SVR offers more accurate results with lower prediction error compared to PLSR model; however, PLSR is easy to handle and fast to optimize.