Cargando…

Bayesian inference for an illness-death model for stroke with cognition as a latent time-dependent risk factor

Longitudinal data can be used to estimate the transition intensities between healthy and unhealthy states prior to death. An illness-death model for history of stroke is presented, where time-dependent transition intensities are regressed on a latent variable representing cognitive function. The cha...

Descripción completa

Detalles Bibliográficos
Autores principales: van den Hout, Ardo, Fox, Jean-Paul, Klein Entink, Rinke H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668781/
https://www.ncbi.nlm.nih.gov/pubmed/22080595
http://dx.doi.org/10.1177/0962280211426359
Descripción
Sumario:Longitudinal data can be used to estimate the transition intensities between healthy and unhealthy states prior to death. An illness-death model for history of stroke is presented, where time-dependent transition intensities are regressed on a latent variable representing cognitive function. The change of this function over time is described by a linear growth model with random effects. Occasion-specific cognitive function is measured by an item response model for longitudinal scores on the Mini-Mental State Examination, a questionnaire used to screen for cognitive impairment. The illness-death model will be used to identify and to explore the relationship between occasion-specific cognitive function and stroke. Combining a multi-state model with the latent growth model defines a joint model which extends current statistical inference regarding disease progression and cognitive function. Markov chain Monte Carlo methods are used for Bayesian inference. Data stem from the Medical Research Council Cognitive Function and Ageing Study in the UK (1991–2005).