Cargando…
Relation of Black Race between High Density Lipoprotein Cholesterol Content, High Density Lipoprotein Particles and Coronary Events (From the Dallas Heart Study)
Therapies targeting high density lipoprotein cholesterol content (HDL-C) have not improved coronary heart disease (CHD) outcomes. HDL particle concentration (HDL-P) may better predict CHD. However, the impact of race/ethnicity on the relations between HDL-P and subclinical atherosclerosis/ incident...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4669058/ https://www.ncbi.nlm.nih.gov/pubmed/25661572 http://dx.doi.org/10.1016/j.amjcard.2015.01.015 |
Sumario: | Therapies targeting high density lipoprotein cholesterol content (HDL-C) have not improved coronary heart disease (CHD) outcomes. HDL particle concentration (HDL-P) may better predict CHD. However, the impact of race/ethnicity on the relations between HDL-P and subclinical atherosclerosis/ incident CHD events has not been described. Participants from the Dallas Heart Study, a multiethnic, probability-based, population cohort of Dallas County adults had the following baseline measurements: HDL-C, HDL-P by nuclear magnetic resonance imaging (NMR), and coronary artery calcium (CAC) by electron beam computed tomography. Participants were followed for a median of 9.3 years for incident CHD events (composite of first myocardial infarction, stroke, coronary revascularization, or cardiovascular death). The study comprised 1977 participants free from CHD (51% women, 46% Black). In adjusted models, HDL-C was not associated with prevalent CAC (p=0.13) or incident CHD overall (HR per 1SD: 0.89, 95% CI 0.76–1.05). However, HDL-C was inversely associated with incident CHD among non-Black (adjusted HR per 1SD 0.67, 95% CI 0.46–0.97) but not Black participants (HR 0.94, 95% CI 0.78–1.13, p(interaction) = 0.05). Conversely, HDL-P, adjusted for risk factors and HDL-C, was inversely associated with prevalent CAC (p=0.009) and with incident CHD overall (adjusted HR per 1SD: 0.73, 95% CI 0.62–0.86) with no interaction by Black race/ethnicity (p(interaction) = 0.57). In conclusion, in contrast to HDL-C, the inverse relationship between HDL-P and incident CHD events is consistent across ethnicities. These findings suggest that HDL-P is superior to HDL-C in predicting both prevalent atherosclerosis as well as incident CHD events across a diverse population and should be considered as a therapeutic target. |
---|