Cargando…
Pharmacogenetic Risk Stratification in Angiotensin-Converting Enzyme Inhibitor-Treated Patients with Congestive Heart Failure: A Retrospective Cohort Study
BACKGROUND: Evidence for pharmacogenetic risk stratification of angiotensin-converting enzyme inhibitor (ACEI) treatment is limited. Therefore, in a cohort of ACEI-treated patients with congestive heart failure (CHF), we investigated the predictive value of two pharmacogenetic scores that previously...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4669156/ https://www.ncbi.nlm.nih.gov/pubmed/26633885 http://dx.doi.org/10.1371/journal.pone.0144195 |
Sumario: | BACKGROUND: Evidence for pharmacogenetic risk stratification of angiotensin-converting enzyme inhibitor (ACEI) treatment is limited. Therefore, in a cohort of ACEI-treated patients with congestive heart failure (CHF), we investigated the predictive value of two pharmacogenetic scores that previously were found to predict ACEI efficacy in patients with ischemic heart disease and hypertension, respectively. Score A combined single nucleotide polymorphisms (SNPs) of the angiotensin II receptor type 1 gene (rs275651 and rs5182) and the bradykinin receptor B1 gene (rs12050217). Score B combined SNPs of the angiotensin-converting enzyme gene (rs4343) and ABO blood group genes (rs495828 and rs8176746). METHODS: Danish patients with CHF enrolled in the previously reported Echocardiography and Heart Outcome Study were included. Subjects were genotyped and categorized according to pharmacogenetic scores A and B of ≤1, 2 and ≥3 each, and followed for up to 10 years. Difference in cumulative incidences of cardiovascular death and all-cause death were assessed by the cumulative incidence estimator. Survival was modeled by Cox proportional hazard analyses. RESULTS: We included 667 patients, of whom 80% were treated with ACEIs. Differences in cumulative incidences of cardiovascular death (P = 0.346 and P = 0.486) and all-cause death (P = 0.515 and P = 0.486) were not significant for score A and B, respectively. There was no difference in risk of cardiovascular death or all-cause death between subjects with score A ≤1 vs. 2 (HR 1.03 [95% CI 0.79–1.34] and HR 1.11 [95% CI 0.88–1.42]), score A ≤1 vs. ≥3 (HR 0.80 [95% CI 0.59–1.08] and HR 0.91 [95% CI 0.70–1.20]), score B ≤1 vs. 2 (HR 1.02 [95% CI 0.78–1.32] and HR 0.98 [95% CI 0.77–1.24]), and score B ≤1 vs. ≥3 (HR 1.03 [95% CI 0.75–1.41] and HR 1.05 [95% CI 0.79–1.40]), respectively. CONCLUSIONS: We found no association between either of the analyzed pharmacogenetic scores and fatal outcomes in ACEI-treated patients with CHF. |
---|