Cargando…
Spectra of weighted scale-free networks
Much information about the structure and dynamics of a network is encoded in the eigenvalues of its transition matrix. In this paper, we present a first study on the transition matrix of a family of weight driven networks, whose degree, strength, and edge weight obey power-law distributions, as obse...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4669447/ https://www.ncbi.nlm.nih.gov/pubmed/26634997 http://dx.doi.org/10.1038/srep17469 |
Sumario: | Much information about the structure and dynamics of a network is encoded in the eigenvalues of its transition matrix. In this paper, we present a first study on the transition matrix of a family of weight driven networks, whose degree, strength, and edge weight obey power-law distributions, as observed in diverse real networks. We analytically obtain all the eigenvalues, as well as their multiplicities. We then apply the obtained eigenvalues to derive a closed-form expression for the random target access time for biased random walks occurring on the studied weighted networks. Moreover, using the connection between the eigenvalues of the transition matrix of a network and its weighted spanning trees, we validate the obtained eigenvalues and their multiplicities. We show that the power-law weight distribution has a strong effect on the behavior of random walks. |
---|