Cargando…
Supplementary data of “Impacts of mesic and xeric urban vegetation on outdoor thermal comfort and microclimate in Phoenix, AZ”
An advanced Markov-Chain Monte Carlo approach called Subset Simulation is described in Au and Beck (2001) [1] was used to quantify parameter uncertainty and model sensitivity of the urban land-atmospheric framework, viz. the coupled urban canopy model-single column model (UCM-SCM). The results show...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4669528/ https://www.ncbi.nlm.nih.gov/pubmed/26702421 http://dx.doi.org/10.1016/j.dib.2015.11.006 |
Sumario: | An advanced Markov-Chain Monte Carlo approach called Subset Simulation is described in Au and Beck (2001) [1] was used to quantify parameter uncertainty and model sensitivity of the urban land-atmospheric framework, viz. the coupled urban canopy model-single column model (UCM-SCM). The results show that the atmospheric dynamics are sensitive to land surface conditions. The most sensitive parameters are dimensional parameters, i.e. roof width, aspect ratio, roughness length of heat and momentum, since these parameters control the magnitude of sensible heat flux. The relative insensitive parameters are hydrological parameters since the lawns or green roofs in urban areas are regularly irrigated so that the water availability for evaporation is never constrained. |
---|