Cargando…
Using Akaike's information theoretic criterion in mixed-effects modeling of pharmacokinetic data: a simulation study
Akaike's information theoretic criterion for model discrimination (AIC) is often stated to "overfit", i.e., it selects models with a higher dimension than the dimension of the model that generated the data. However, with experimental pharmacokinetic data it may not be possible to iden...
Autores principales: | Olofsen, Erik, Dahan, Albert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000Research
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670010/ https://www.ncbi.nlm.nih.gov/pubmed/26673949 http://dx.doi.org/10.12688/f1000research.2-71.v2 |
Ejemplares similares
-
A primer on model selection using the Akaike Information Criterion
por: Portet, Stéphanie
Publicado: (2020) -
Performance of Akaike Information Criterion and Bayesian Information Criterion in Selecting Partition Models and Mixture Models
por: Liu, Qin, et al.
Publicado: (2022) -
Practical advice on variable selection and reporting using Akaike information criterion
por: Sutherland, Chris, et al.
Publicado: (2023) -
An improved sparse identification of nonlinear dynamics with Akaike information criterion and group sparsity
por: Dong, Xin, et al.
Publicado: (2022) -
A stress test to evaluate the usefulness of Akaike information criterion in short-term earthquake prediction
por: Tozzi, Roberta, et al.
Publicado: (2020)