Cargando…

A High-Performance Thin Layer Chromatography (HPTLC) Method for Simultaneous Determination of Diphenhydramine Hydrochloride and Naproxen Sodium in Tablets

A rapid and simple high-performance thin layer chromatography (HPTLC) method with densitometry at 230 nm was developed and validated for simultaneous determination of diphenhydramine hydrochloride (DPH) and naproxen sodium (NPS) from pharmaceutical preparation. The separation was carried out on alum...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhole, R.P., Shinde, S.S., Chitlange, S.S., Wankhede, S.B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Libertas Academica 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670047/
https://www.ncbi.nlm.nih.gov/pubmed/26692760
http://dx.doi.org/10.4137/ACI.S31506
Descripción
Sumario:A rapid and simple high-performance thin layer chromatography (HPTLC) method with densitometry at 230 nm was developed and validated for simultaneous determination of diphenhydramine hydrochloride (DPH) and naproxen sodium (NPS) from pharmaceutical preparation. The separation was carried out on aluminum plates precoated with silica gel 60 F(254) using mobile phase toluene:methanol:glacial acetic acid (7.5:1:0.2, v/v/v). The linearity range lies between 200 and 1200 ng/band for DPH and 1760 and 10,560 ng/band for NPS with correlation coefficients of 0.994 and 0.995, respectively. The R(f) value for DPH is 0.20 ± 0.05 and for NPS is 0.61 ± 0.06. % Recoveries of DPH and NPS was in the range of 99.70%–99.95% and 99.63%–99.95%, respectively. Limit of detection value for DPH was 13.21 ng/band and for NPS was 8.03 ng/band. Limit of quantitation value for DPH was 40.06 ng/band and for NPS was 24.34 ng/band. The developed method was validated as per ICH guidelines. In stability testing, DPH was found unstable to acid and alkaline hydrolysis, and DPH and NPS were found unstable to oxidation, whereas both the drugs were stable to neutral and photodegradation. The proposed method was successfully applied for the routine quantitative analysis of dosage form containing DPH and NPS.