Cargando…
Voice Disorder Classification Based on Multitaper Mel Frequency Cepstral Coefficients Features
The Mel Frequency Cepstral Coefficients (MFCCs) are widely used in order to extract essential information from a voice signal and became a popular feature extractor used in audio processing. However, MFCC features are usually calculated from a single window (taper) characterized by large variance. T...
Autores principales: | Eskidere, Ömer, Gürhanlı, Ahmet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670637/ https://www.ncbi.nlm.nih.gov/pubmed/26681977 http://dx.doi.org/10.1155/2015/956249 |
Ejemplares similares
-
The application of fractional Mel cepstral coefficient in deceptive speech detection
por: Pan, Xinyu, et al.
Publicado: (2015) -
Cepstral Analysis of Voice in Patients With Thyroidectomy
por: Shin, Yu Jeong, et al.
Publicado: (2016) -
State-space multitaper time-frequency analysis
por: Kim, Seong-Eun, et al.
Publicado: (2018) -
Cepstral Peak Prominence Values for Clinical Voice Evaluation
por: Murton, Olivia, et al.
Publicado: (2020) -
Alignment-Free Z-Curve Genomic Cepstral Coefficients and Machine Learning for Classification of Viruses
por: Adetiba, Emmanuel, et al.
Publicado: (2018)